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ABSTRACT
Electron beam–wave interaction is essential for particle acceleration, radiation generation, microwave and millimeter-wave communications,
and fusion research. In this work, we first provide a tutorial review on the gap coupling factor, the key parameter to characterize beam
cavity–gap interaction in linear beam devices, by using Carter’s simple model and the disk model. We then conduct a parametric analysis of
the gap coupling factor considering large signals. The gap coupling factor is investigated for different beam and tunnel radius, gap length,
RF current, and anode voltage, aiming to provide guidance for the design of higher frequency devices. The effects of space charge in a large
signal interaction are particularly examined, as the space charge force is responsible for energy loss and instabilities. The electron velocity
change through the beam interaction gap is studied under different cavity parameters. The analysis is exemplified in a high-efficiency RF
power amplifier based on an inductive output tube. The results are compared favorably against experiments and particle-in-cell simulations.
We demonstrate the design of device parameters for scaling up in high frequency operations.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0254067

I. INTRODUCTION

In recent years, there has been a high demand for compact,
high-power, high-frequency electromagnetic radiation sources for
energy transfer, particle acceleration, beam quality control, and
communications.1–5 To meet this demand, it is crucial to increase
the power of traditional vacuum electronic amplifiers, particularly
in high frequency operation. Among the most promising devices
are those with longitudinal interaction, such as traveling wave tubes
(TWTs), klystrons, and inductive output tubes (IOTs).6–9 Due to the
reduced size of the tube’s cross section in the millimeter range or
even higher frequency, electron beams with high current density are
required to increase the device’s power.10,11

Perhaps, the simplest beam–circuit interaction for radiation
extraction is that of a linear electron beam with a single gap cavity,
as in the case of IOT. To achieve high power at high frequencies,
it is necessary to use high-velocity electrons and have a small gap

between the grid and the anode to avoid transit time effects.7,12,13

However, the capacitance of the grid based operation always limits
the modulation frequency and thus the operation frequency, which
remains the case even for devices based on field emission arrays
(FEAs).14 Recent concept to achieve direct density modulation from
the cathodes using optical means further eliminates the frequency
constraints put by the RC constant of the circuit,15 thus enabling
the development of power amplifiers for wideband applications at
ultra-high frequencies. A better understanding of beam–wave inter-
action, especially in the nonlinear, large signal regime, as well as its
parametric scalings, is crucial for the design optimization of such
devices.

The motivation of this work is twofold. First, we provide a
simple tutorial review on determining the gap coupling factor that
is used to characterize beam–wave interaction. Both the simple
analytical model and the disk model will be reviewed to describe
beam transport with space charge effects. Next, we conduct a
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FIG. 1. Interaction gap of a linear beam device represented in (a) the simple model
and (b) the disk model.

parametric analysis of beam cavity–gap interaction, considering
large signals, using the analytical model and the disk model. The
results are verified against experiments and particle-in-cell (PIC)
simulations. The analysis is meant to set a stage for the para-
meter design of devices scaled up for high frequency operations, as
exemplified near the end of this article.

A simple model is shown in Fig. 1(a), where an electron beam is
injected along the axial z direction. The tunnel and beam radius are a
and b, respectively, g is the output gap length, V gap is the gap voltage,
and u0 and us are the initial and final velocities of electrons, respec-
tively. In Fig. 1(b), cylindrical disks with thickness L are used to
represent the beam to investigate the nonlinear space charge effects.
As the beam passes through the cavity, it interacts with its electro-
magnetic fields, which causes the transfer of kinetic energy from the
beam particles to the cavity modes, ultimately generating electro-
magnetic waves. To optimize this interaction, parameters such as
tunnel radius, beam radius, and gap length play a crucial role. The
tunnel radius affects the efficient beam confinement and optimal
interaction with RF fields, the beam radius influences interaction
dynamics, and the gap designs ensure efficient coupling between
the beam and cavity, maximizing energy transfer.16,17 By optimiz-
ing these parameters, it is possible to enhance device performance
based on existing designs and facilitate advancements across various
scientific and technological domains.

In Sec. II, we describe the models used for large signal analy-
sis. While one can refer to textbooks and the previous literature,18–20

for completeness and easy referencing, we also include derivations
of key parameters in the Appendixes. In Sec. III, we present and dis-
cuss the results. In Sec. IV, we exemplify the device analysis for an
IOT with a scale up to high frequency. A comparison with PIC sim-
ulations and experiments is also provided. Finally, we conclude our
findings in Sec. V.

II. GAP COUPLING FACTOR
A. Simple model

Assume the electric field across the gap along the z direc-
tion E(z, t) = E(z)e jωt , where ω is the RF frequency.18 A general

expression of the gap coupling factor is the ratio of the effective volt-
age, Veff = ∫

g
o E(z)e jβezdz, to the RF gap voltage, Vgap = ∫

g
0 E(z)dz,

where βe = βe(u) = ω/u is the beam propagation factor with u being
the electron velocity.

For small signal analysis, the gap coupling factor is

M(u) = Veff
Vgap
=

2
β(u)b

I1(β(u)b)
I0(β(u)a)

sin ( β(u)g
2 )

β(u)g
2

(see Appendix A), where

I0 and I1 are the zeroth order and first order modified Bessel
functions of the first kind, respectively. For small signal analysis,
the electron velocity is assumed to be approximately a constant
through the gap, and the wavenumber can be taken as a constant
as β(u0) =

ω
u0

. However, for large signal analysis, as the electron
velocity is not constant through the gap, the initial and final
wavenumbers are β(u0) =

ω
u0

and β(us) =
ω
us

, with u0 and us being
the initial and final velocities of the electron, respectively. To still
utilize the above expression for the gap coupling factor M(u),
following Carter,20 we use u = us+u0

2 for large signal analysis, which
leads to

Meff =
2

β( u0+us
2 )b

I1(β( u0+us
2 )b)

I0(β( u0+us
2 )a)

sin( β( u0+us
2 )g
2 )

β( u0+us
2 )g
2

. (1)

The initial velocity is obtained from the kinetic energy of a
relativistic electron, which is eVa = mc2

−m0c2, where Va is the
applied anode voltage, m0c2 is the rest energy of an electron,

m = m0/

√

1 − u2
0/c

2 is the relativistic mass, and c is the velocity of

light. Therefore, u0 = c
√

1 − 1/(1 + ηVa/c2
)

2
, where η = e/m0 is the

charge-to-mass ratio.18 The final velocity, us, is also derived from
the kinetic energy eV s = mc2

−m0 c2, where Vs = Va −M2
eff IRFRL

is the spent beam voltage, IRF is the injected beam RF current,
RL is the external load impedance, and the relativistic mass is

m = m0/

√

1 − u2
s /c2.18,20 Therefore, the final velocity is

us = c

¿

Á
Á
ÁÀ1 − 1/

⎛

⎝

1 +
η(Va −M2

eff IRFRL)

c2
⎞

⎠

2

. (2)

We calculate Meff and us from Eqs. (1) and (2) iteratively.
We express the gap coupling factor in normalized form as

Meff =
2
b

I1(b)

I0(a)

sin ( g
2)

(
g
2)

, (3)

where the normalized tunnel, beam radius, and gap length are
a = a

L , b = b
L , g = g

L , respectively, with the length scale
L = 1/β( u0+us

2 ).

B. Disk model
The current bunches rapidly disperse in the z direction after

exiting the electron beam–wave interaction gap due to space-charge
effects and velocity spread that cause the spent beam to behave like a
multi-velocity DC beam. A more precise approach involves consid-
ering the current pulses as consecutive cylinder disks of space charge
[Fig. 1(b)].21 We use Green’s function to calculate the potential
distribution in cylinder.22
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The axial electric field averaged over the beam is given by (see
Appendix B)20

Ez(z) =
Vgap

2π ∫
∞

−∞

2
βb

I1(βb)
I0(βa)

sin (βg/2)
βg/2

e−jβzdβ. (4)

For the disk model, we estimate the gap voltage
V gap = IRFMeff RL from the simple model in order to provide a
direct comparison with the simple model.20 In the calculation, we
integrate Eq. (4) from 0 to mπ

g to get the value of Ez(z), where g is
the gap length, and we use m = 50 to consider a broader range of
frequencies. The axial electric field due to space charge potential out-
side and inside of a cylindrical disk charge of radius b located from
z = −L/2 + zi to L/2 + zi (with zi being the center of the disk) inside
an earthed conducting cylinder of radius a averaged over the disk
cross section is (see Appendix C)22–25

Esc1 = sgn (z − zi)
4ρc

ε0

∞
∑

m=1

1
μm

[J1(μmb)]2

(μma)2
[J1(μma)]2

× e−μm ∣z−zi ∣ sinh(
μmL

2
) (5)

for ∣z − zi∣ > L/2 and

Esc2 =
4ρc

ε0

∞
∑

m=1

1
μm

[J1(μmb)]2

(μma)2
[J1(μma)]2

e−
μmL

2 sinh μm(z − zi) (6)

for ∣z − zi∣ ≤ L/2.
The velocity, us, of the charge disk can then be calculated

from the equation of motion, where SC is the space charge;
SC = 1 and SC = 0 are used when the space charge effect is present
and absent, respectively (see Appendix D),26

dusi

dt
= η(1 −

u2
0

c2 )

3/2⎡
⎢
⎢
⎢
⎢
⎣

Ez(zi) cos (ωt) + SC
ND

∑

j=1

Q
e

Esc1,2(zi − zj)

⎤
⎥
⎥
⎥
⎥
⎦

.

(7)
Here, the number of electrons in one disk is Q

e , where Q is the charge
in the disk, Ez(z) is the electric field due to the gap given in Eq. (4),
and Esc1 and Esc2 are given by Eqs. (5) and (6), respectively, with
setting ρc =

q
πb2L =

e
πb2L .

The kinetic energy of the charge disks with charge Q is found
to be (see Appendix D)

KEk =
Q
η

c2
ND

∑

j=1

⎛

⎜

⎝

1/

¿

Á
ÁÀ1 −

u2
sk, j

c2 − 1
⎞

⎟

⎠

, (8)

where k(= 1, 2, . . .) is the time step.
The model operates by injecting an RF current, where IRF is

used to calculate the gap voltage and DC beam current Ib is used to
calculate the disk charge. The calculation relies on using ND(=50)
rigid disks with the same dimensions and charges to represent the
beam over one RF period. The initial position of the bunch is set
to be far from the gap that allows all electrons to start their motion
outside the gap field. Furthermore, we set the final time to be long
enough for all electrons to exit the gap field.18,19 From Eq. (7), the E

field on the disks i ( for i = 1, . . .ND) at position zi equals the sum
of the axial field Ez(z) at zi and the field due to the space charge
of disks at position zj ( for j = 1, . . .ND) and j ≠ i [i.e., the field due
to its own space charge of disk i is 0, as seen from Eq. (6)]. In
our calculation, the center of the gap is located at z = 0, the ini-
tial time is t0 = 0 ns when the bunching center position is z0 =

−4π
β(u0)

= −0.14 m, the total time is t f = 3 ns when all the disks had left the
field of the gap, and the time interval Δt = t f −t0

100 = 0.03 ns, where
the number of time steps is 100. The initial position of the disk is
zinitial = z0 + (

ND+1
2 − i)L,26 where L(=0.8 mm) is the thickness of

the disk. Therefore, the initial positions of the first and NDth disk
are −0.12 and −0.16 m, respectively. Next, we numerically integrate
Eq. (7) over a series of fixed steps (a total of 100 time steps). The
result will be a table, where the first column will show the time, fol-
lowed by columns showing the positions of the disks and the velocity
of the electrons. Finally, we use the final velocity of electrons to
calculate the kinetic energy.

We calculate the charge in each disk as Q = Ib
f ND

,26 where
ND(= 50) is the number of rigid disks, f is the frequency, and Ib
is the injected DC beam current,18,26 in order to calculate the kinetic
energy by using Eq. (8).

III. PARAMETRIC ANALYSIS OF BEAM–GAP
INTERACTION

Unless otherwise stated, we use the following default values
in our calculations for the interaction of a beam with a single gap:
a = 11 mm, b = 6.5 mm, g = 11 mm, RL = 26 kΩ, f = 1.3 GHz,
Ib = 0.9 A, IRF = 1.4 A, and Va = 25 kV. In the case of parametric
analysis of the interaction on the dependence of a certain parameter,
all the other parameters are kept the same as these default values.

The gap coupling factor M calculated from the simple model
and the disk model with and without space charge effects is shown
in Fig. 2 for different injected RF input currents IRF . It is clear that
the small signal analysis is independent of IRF and gives the largest
M. For a small IRF , all the models yield similar values and the small
signal analysis is a good approximation. However, as IRF increases,
the gap coupling factor decreases using the large signal simple model
and the disk model. Including the space charge effect further reduces
the value of M. The reduction in M with increasing IRF can be seen
from Eqs. (1) and (2). From Eq. (2), the final electron velocity us
decreases as the RF current IRF increases, which leads to an increase
in the wavenumber β(u) = ω

u0+us
and, consequently, a decrease in the

gap coupling factor as seen from Eq. (1).
In Fig. 3, the gap coupling factor M is plotted against the tunnel

radius a, beam radius b, gap length g, load resistance RL, frequency
f , and applied anode voltage Va. When the tunnel radius and gap
length of the tunnel are decreased, M increases by improving elec-
tron beam interaction with the RF field and reducing transit time
spread. In practice, it is typically chosen that the gap length is nearly
equal to the tunnel radius, ensuring balanced radial field uniformity
and resistance to field variations within the gap, which helps prevent
electrical breakdown and multipactor discharge.18,27,28 For a larger
beam radius, both the simple and disk models show a higher M due
to increased field experienced by the beam and reduced space charge
effects for a fixed beam current. However, to prevent the intercep-
tion of electrons on the drift tube, the radius of the electron beam
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FIG. 2. Comparison of the gap coupling factor of the simple model for small signal
(SS) and large signal (LS) analyses and the disk model with and without space
charge (SC) as a function of different RF currents.

FIG. 3. Comparison of the gap coupling factor of the simple and disk models with
and without space charge for different (a) tunnel radius a, (b) beam radius b, (c)
gap length g, (d) load resistor RL, (e) frequency f , and (f) anode voltage Va.

is usually limited to 2a/3.18 Increased load resistor results in low-
ering the gap coupling factor, where the dependence of M on RL is
similar to that on IRF as shown in Fig. 2. Increasing the frequency
implies increasing the wavenumber in order to maintain the syn-
chronization between the beam and the wave as βez ≅ ωt, which
leads to a reduction in M [cf. Eq. (1)]. For an IOT, the operation

frequency of the grid is capped at ∼1.3 GHz.20,29 However, with opti-
cal gating for beam density modulation during emission,15 a much
higher frequency can be achieved, where parametric scaling analysis
to increase the gap coupling factor is important. A higher anode volt-
age, Va, leads to a higher beam energy and electron velocity, which
reduces the wavenumber β and thus increases M. For all the cases
presented, in the presence of negative space charge effect in the out-
put gap, the gap coupling factors are always lower compared to that
from the simple model and the disk model without space charge. In
the cases presented, including space charge effects in the disk model
show a reduction of up to 3.85% in the gap coupling factor.

In Fig. 4, the gap coupling factor M is shown in terms of nor-
malized tunnel radius a, beam radius b, and gap distance g in Eq. (3),
which is valid for the simple model for both the small signal and
large signal analysis. We can see that the increase in normalized tun-
nel radius a and gap length g lowers the M, whereas the increase in
normalized beam radius b increases the M.

Figure 5 illustrates the average electric field, Ez(z)
Vgap/g [from

Eq. (4)], acting on electrons in the axial direction. The changes in
the tunnel radius, beam radius, and gap length impact the electric
field distribution and subsequently affect the behavior of the electron
beam. In particular, increasing the beam radius and lowering the
tunnel radius and gap length can enhance the electric field strength
in the gap that accelerates electrons, which is consistent with the
increase in the gap coupling factor, as shown in Figs. 3 and 4.

Figure 6 shows the normalized velocities (in terms of the ini-
tial velocity) when electrons pass through the gap calculated from
the disk model with and without space charge effects. The vertical
dashed lines represent the physical edges of the gap in the beam
tunnel. Decreasing the tunnel radius, increasing the beam radius,
and decreasing the gap length all result in lowering the final veloc-
ity of electrons and thus a higher energy transfer from the beam to

FIG. 4. Comparison of the gap coupling factor as a function of normalized (a) a
and b for fixed g = 11, (b) g and a for fixed b = 6.5, and (c) g and b for fixed
a = 11.

FIG. 5. Variation of axial electric field of the disk model for different values of (a)
tunnel radius a, (b) beam radius b, and (c) gap length g.
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FIG. 6. Normalized electron velocity of the disk model with [(a)–(c)] and without
[(d)–(f)] space charge for different values of [(a), (d)] tunnel radius, [(b), (e)] beam
radius, and [(c), (f)] gap length.

microwave, which is consistent with the parametric dependence of
the gap coupling factor shown in Figs. 2–4. Furthermore, the final
velocity of the electrons at the exit of the gap is higher and the veloc-
ity spread is larger for the presence of space charge, which increases
the beam kinetic energy and decreases the RF efficiency.

Figure 7 shows that the normalized kinetic energy, ∑KE/ND
KE0

,
is decreased when there is a decrease in tunnel radius and gap
length, or an increase in beam radius, where the total kinetic energy
is summed over all the ND disks and KE0 is the initial kinetic
energy of one disk. The reduction in the kinetic energy means that
more efficient power transfer from the electron beam, which again
is consistent with the gap coupling factor characterization above.

FIG. 7. Normalized kinetic energy of the disk model with (solid lines) and with-
out (dotted lines) space charge for different values of (a) tunnel radius, (b) beam
radius, and (c) gap length.

Including space charge in the gap results in a higher electron veloc-
ity, resulting in an increase in kinetic energy and a reduction in
efficiency.30

IV. AN IOT EXAMPLE WITH SCALE
UP TO HIGH FREQUENCY

IOT is operated as a common grid amplifier. The DC and first
harmonic of the RF beam current can be determined using the
Fourier analysis of the emission beam current. The RF output power
is dependent on the injected RF current, gap coupling factor, and
load impedance, RL,

Pout =
1
2

M2
eff I2

RFRL. (9)

The efficiency of the IOT is

ηe =
Pout

IbVa
, (10)

where Ib(=0.9 A) is the DC beam current18,20 and Va is the anode
voltage.

The RF power and efficiency of IOT at 1.3 GHz calculated from
the large signal simple model and disk model are shown in Fig. 8.
Both the RF output power and efficiency increase when the tun-
nel radius or gap length decreases, as it enhances interaction with
the RF field and reduces the electron transit time, respectively.16,17,27

For a larger beam radius, the output power and efficiency are higher
as there is better coupling between the beam and the gap with less
space charge effect for a fixed beam current.16,22 As the load resistor
RL increases, although the gap coupling factor decreases [Fig. 3(d)],
both the RF output power and the efficiency increase as Pout ∝ RL
[see Eq. (9)]. When the frequency is increased, the time for electron
interaction with the RF fields decreases as the RF cycles happen more
quickly. Fewer electrons may effectively contribute to RF power
generation, resulting in reduced output power and energy trans-
fer efficiency. When the anode voltage increases, the output power
of the amplifier increases because of the increase in the gap cou-
pling factor [Fig. 3(f)]; however, the efficiency decreases as ηe ∝

1
Va

[see Eq. (10)].
Figure 8 also shows that our calculations using the simple

model agree well with the experimental results extracted using the
simple model in Refs. 20 and 31; and calculations using the disk
model with space charge effects have a reasonable agreement with
the PIC simulation results, with the same parameters as the default
values listed at the beginning of Sec. III. In the PIC simulations,
a single cavity gap was set up in XOOPIC,32 where an external
axial magnetic field of 0.6 T was applied to reduce the expansion
of the electron beam. Using the default parameters, the RF output
power and efficiency are 10.79 kW and 47.9% for the PIC simula-
tion, while our disk model with space charge shows 11.29 kW and
50.8%, respectively. As seen from Fig. 8, in general, the large sig-
nal simple model overestimates the RF power and efficiency. While
the simple model can provide a quick estimation of the scaling,
more accurate calculations require the use of the disk model with
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FIG. 8. Comparison of RF output power (solid lines) and efficiency (dotted lines)
from the large signal simple model and disk model with and without space charge
(SC) for different values of (a) tunnel radius a, (b) beam radius b, (c) gap length g,
(d) load resistor RL, (e) frequency f , and (f) anode voltage Va. The symbols are for
experimental results obtained using the simple model in Refs. 20 and 31 and for
PIC results using XOOPIC.

space charge effects or PIC simulations if the computational cost is
affordable.

At higher frequencies, the RF output power and efficiency
drop significantly [see Fig. 8(e)]. It is thus important to find out
how to enhance both the output power and efficiency at high
frequencies by tuning the device parameters based on existing
design. In this example, we assume that the same cathode is used
as in the 1.3 GHz frequency case as in Fig. 8, where the beam
radius b is kept at 6.5 mm. In Fig. 9(a), we observe that reduc-
ing the tunnel radius a improves both the output power and
efficiency at 5 GHz, with all other parameters as the default val-
ues listed at the beginning of Sec. III. By adopting a = 7.5 mm
with all the other parameters as default values, Fig. 9(b) shows that
decreasing g further increases Pout and ηe. In Fig. 9(c), with fixed
a = 7.5 mm and g = 3 mm, it shows that a higher RL leads to an
increase in Pout and ηe. Finally, Fig. 9(d) demonstrates that the
device’s efficiency can be further enhanced by increasing the injected
RF current, which can be realized by electron emission with a higher
modulation depth, e.g., using optical means.15 By using a = 7.5 mm,
g = 3 mm, RL = 50 kΩ, and IRF = 1.9 A at f = 5 GHz, the RF output
powers are 13.62, 11.49, and 12.48 kW, with efficiencies of 45.4%,
38.3%, and 41.6% for the simple and disk models with and without
space charge, respectively.

FIG. 9. RF output power (solid lines) and efficiency (dotted lines) from the simple
model and disk model with and without space charge (SC) at 5 GHz for different
values of (a) tunnel radius a, (b) gap length g, (c) load resistor RL, and (d) RF
current IRF .

V. CONCLUSION
In this study, we provide a brief tutorial of the gap coupling

factor using the simple and disk models for extracting energy from
electron beams and generating RF power. We considered the effects
of space charge in the disk model and provided a parametric anal-
ysis of the gap coupling factor for its dependence on beam and
tunnel radius, gap length, frequency, and beam energy. It is found
that the RF output power and efficiency are lowered due to the pres-
ence of space charge (see Fig. 8), which is attributed to the increased
kinetic energy of the electron beam after interaction due to the dis-
tortion of electron trajectories by the space charge force. Increasing
the beam filling factor (i.e., increasing beam radius or decreasing
tunneling radius) and decreasing the gap length lower the kinetic
energy (see Fig. 7) and enhance conversion efficiency, which can aid
in the design of beam interaction circuit, as exemplified in an IOT
amplifier with a scale up to high frequency operation. While the sim-
ple model can be useful to quickly predict the parametric scaling, it
overestimates the gap coupling factor as compared to the disk mod-
els. The results from the disk models with space charge are compared
favorably with PIC simulations. Disk models with the space charge
effect may be used to more accurately estimate the RF power and
efficiency than the simple model, and with less computational cost
than PIC simulations.

Future studies may include the study of gap coupling factor
for different beam profiles (both transverse and longitudinal) and
its connection with electron bunching mechanisms in beam–gap
interactions.33–35
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APPENDIX A: SIMPLE MODEL SIGNAL
GAP COUPLING FACTOR

For a gap electric field, E(z, t) = E(z)e jωt , and the RF gap volt-
age is Vgap = ∫

g
0 E(z)dz. The acceleration of the electron within the

gap field is given by the equation of motion,36

d2z
dt2 =

e
m

E(z)ejωt , (A1)

where e and m are the electron charge and mass, respectively. Mul-
tiplying both sides of Eq. (A1) by 2dz, we obtain the derivative of
the square of velocity, 2 dz

dt
d2z
dt2 dt = d

dt (
dz
dt )

2
dt = 2 e

m E(z)e jωtdz. After
integration in terms of z from 0 to z, with initial electron velocity u0,
we get

(
dz
dt
)

2

− u2
o = 2

e
m∫

z

0
E(z)ejωtdz. (A2)

Assuming a small RF modulation (i.e., small signal approx-
imation), we have βez ≅ ωt. Substituting this into Eq. (A2) and
integrating from z = 0 (when t = 0) to the end of the gap, we
get 1

2 m[u2
− u2

0] = e∫
g

0 E(z)e jβezdz, where u is the exit velocity of
the electron, and the energy change of the electron due to its
interaction with the gap 1

2 m[u2
− u2

0] = eMVgap = eVeff .36 Therefore,
Veff = ∫

g
0 E(z)e jβezdz and the gap coupling factor becomes M = Veff

Vgap

=
∫

g
0 E(z)e jβezdz
∫ g

0 E(z)dz . This expression may be generalized by extending
the integration over the entire z axis (e.g., for a gridless gap or a
gap with considerable field outside the physical opening) to yield

M(βe) =
∫ ∞−∞ E(z)e jβezdz
∫ ∞−∞ E(z)dz .

For a constant electric field E(z) = Vgap
g across the gap from

−g/2 to g/2, taking the real part of the integral, we have

M(βe) =

Vgap
g ∫

g/2
−g/2 cos (βez)dz

Vgap
=

sin ( βeg
2 )

βeg
2

. (A3)

For the cylindrical geometry in Fig. 1(a), the field can be solved
from Maxwell’s equations in the absence of space charge (i.e., the
wave equation), which yields the approximate solution Ez(r, z, t)
= f (z)I0(γr)e jωt

∝ I0(γr)e jβze jωt , with γ2
= β2
− k2 (>0), k = ω/c,

and β being the axial wavenumber, which is assumed to be close to
the beam propagation factor βe.36

The electric field averaged over the beam’s cross section
area A = πb2 thus becomes Ez(z, t) = 1

A∫
b

0 2πrI0(γr) f (z)e jωtdr
=

2π
A f (z)e jωt

∫

b
0 rI0(γr)dr = 2 f (z)e jωt I1(γb)

γb . Again, assuming
small signal and using βez ≅ ωt during electron’s transit across
the gap from −g/2 to g/2, the effective voltage becomes Veff

= ∫

g/2
−g/2 Ez(z)e jβezdz = ∫

g/2
−g/2 2 f (z) I1(γb)

γb e jβezdz = 4 I1(γb)
γb

f0
βe

sin ( βeg
2 ),

where we have taken only the real part of the integral and
assumed no variation of the field along the z direction inside
the gap, i.e., f (z) = f0 [cf. Eq. (A3)]. The gap voltage at r = a is
Vgap(r = a) = ∫

g/2
−g/2 E(r = a, z)dz = ∫

g/2
−g/2 f (z)I0(γa)dz = g f0I0(γa).

Assuming that the wavenumber is close to the beam prop-
agation constant and since u≪ c, we have γ2

≅ γ2
e = β2

e − k2

= (ω/u)2
− (ω/c)2

≅ (ω/u)2
= β2

e . Thus, we can approximate
Veff ≅ 4 I1(βeb)

βeb
f0
βe

sin ( βeg
2 ) and Vgap(r = a) = g f0I0(γa) ≅ g f0I0(βea).

For small signal analysis, where V gap is small and the electron
velocity remains nearly constant, the gap coupling coefficient is

M(β(u)) =
Veff

Vgap(r = a)
=

2
βe(u)b

I1(βe(u)b)
I0(βe(u)a)

sin ( βe(u)g
2 )

βe(u)g
2

. (A4)

For large signal analysis, the electron velocity exiting the gap us
is different from the entering velocity u0, so u = us+u0

2 is used in
calculating the gap coupling coefficient,

M(β(
u0 + us

2
)) =

2
β( u0+us

2 )b
I1(β( u0+us

2 )b)
I0(β( u0+us

2 )a)

sin( β( u0+us
2 )g
2 )

β( u0+us
2 )g
2

. (A5)

APPENDIX B: GAP FIELD

For a piecewise-continuous electric field across the gap Ez(z),
it can be written in terms of the inverse Fourier integral,

G(β) =
1

2π∫
∞

−∞
Ez(z)ejβzdz, (B1)

which is in the same form as the numerator of the gap coupling
factor [see the last expression in the end of the paragraph before
Eq. (A3)]. This means that M can be written in terms of the Fourier
transform of the electric field,

M(β) = ∫
∞
−∞ E(z)ejβzdz

∫

∞
−∞ E(z)dz

=
2π

Vgap
G(β). (B2)
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Comparing Eqs. (A4) and (B2) yields an effective inverse Fourier
integral for the axial electric field averaged over the beam,

Geff (β) =
Vgap

2π
M(β) =

Vgap

2π
2

βb
I1(βb)
I0(βa)

sin (βg/2)
βg/2

, (B3)

based on which the axial component of the electric field aver-
aged over the beam can be obtained as Ez(z) = ∫

∞
−∞ Geff (β)e− jβzdβ,

leading to

Ez(z) =
Vgap

2π ∫
∞

−∞

2
βb

I1(βb)
I0(βa)

sin (βg/2)
βg/2

e−jβzdβ, (B4)

which is the same as Eq. (6) of Carter.20

APPENDIX C: SPACE CHARGE FIELD

Using Green’s function, we calculate the potential voltage when
a charge q is placed at the point z = 0, r = r0, ϕ = ϕ0, inside an earthed
conducting cylinder of radius a shown in p. 188 of Ref. 37. The
potential of the point charge for positive z is

Vpoint =
∞
∑

m=1

∞
∑

n=0
Amne−μmzJn(μmr)cos n(ϕ − ϕ0), (C1)

where Jn is the nth order Bessel function of the first kind and μm
is chosen so that Jn(μma) = 0. Differentiating Eq. (C1) and setting

z = 0 give dV
dz ∣0
= −

∞
∑

m=1

∞
∑

n=0
μmAmnJn(μmr)cos n(ϕ − ϕ0), which, due

to symmetry, is zero except at the point charge itself. After multiply-
ing rJp(μsr)cos p(ϕ − ϕ0) on both sides and integrating from r = 0
to r = a and from ϕ = 0 to ϕ = 2π, all terms on the right disappear
unless p = n and s = m, which leads to

Amn =
−∫

a
0 dr∫

2π
0 dϕ dV

dz ∣0
rJn(μmr) cos n(ϕ − ϕ0)

∫

a
0 dr∫

2π
0 dϕrμm[Jn(μmr)]2[cos n(ϕ − ϕ0)]

2 . (C2)

We can evaluate the lower part of Eq. (C2), where
∫

a
0 rμm[Jn(μmr)]2dr = 1

2 a2μm{[Jn(μma)]2 + [Jn+1(μma)]2} − naJn

(μma)Jn+1(μma) = 1
2 a2μm[Jn+1(μma)]2, and the ϕ integration gives

a factor of π if n > 0 and 2π if n = 0. Thus, Eq. (C2) becomes

Amn =
−(2 − δ0

n)
πμm[aJn+1(μma)]2 ∫

a

0
dr∫

2π

0
dϕ

dV
dz
∣
0
rJn(μmr) cos n(ϕ − ϕ0),

(C3)
where δ0

n = 1 when n = 0 and δ0
n = 0 as n ≠ 0.22,37

In the z = 0 plane, for a point charge, the area △s in
which dV

dz ∣0
≠ 0 is taken so small that in it Jn(μmr) has the

constant value Jn(μmr0) and cos n(ϕ − ϕ0) = 1. The inte-
gral in Eq. (C3) then becomes Jn(μmr0)∫

a
0 ∫

2π
0

dV
dz ∣0

rdrdϕ
= Jn(μmr0)∫△s

dV
dn ds = − q

2ε0
Jn(μmr0), where we have used Gauss’s

electric flux theorem, remembering that only half the flux passes
one side of the area. From Eq. (C3), we get Amn =

(2−δ0
n)qJn(μmr0)

2πε0μma2[Jn+1(μma)]2 ,
which can be inserted into Eq. (C1) to get the potential voltage of a
point charge q inside a conducting cylinder.

We next calculate the potential voltage of a ring of charge
placed at z = 0, r = r0, with the uniform line charge density of

ρr =
q

2πr0
, inside an earthed conducting cylinder of radius a, which

can be obtained by integrating Eq. (C1) in terms of ϕ0 from 0 to 2π
to give

Vring =
∞
∑

m=1

ρrJ0(μmr0)

ε0μma2
[J1(μma)]2

e−μm ∣z∣J0(μmr). (C4)

The potential of the circular area of space charge extending
from r = 0 to r = b placed at z = 0, with the uniform surface charge
density of ρd =

q
πb2 , inside an earthed conducting cylinder of radius

a, can then be obtained by integrating Eq. (C4) in terms of r0 from 0
to b, to obtain

Vcircular area =
∞
∑

m=1

ρdJ0(μmr)
ε0μma2

[J1(μma)]2
e−μm ∣z∣

∫

b

0
r0J0(μmr0)dr0

=

∞
∑

m=1

ρdbJ1(μmb)
ε0μ2

ma2
[J1(μma)]2

J0(μmr)e−μm ∣z∣. (C5)

Next, we consider a cylindrical disk of uniform charge den-
sity ρc =

q
πb2L from z0 = −L/2 to L/2 and with radius of b, inside an

earthed conducting cylinder of radius a. By integrating Eq. (C5) over
z0, we can obtain the outside potential of a cylinder of space charge
where ∣z∣ > L

2 and the inside potential where ∣z∣ < L
2 .22

For potential outside of the cylindrical disk charge,

V1 =
∞
∑

m=1
∫

L/2

−L/2

ρcbJ0(μmr)J1(μmb)
ε0μ2

ma2
[J1(μma)]2

e−μm ∣z−z0 ∣dz0, (C6)

where z > L
2 ≥ z0 for positive z, so we use ∣z − z0∣

= z − z0, as shown in Fig. 10(a). Thus, Eq. (C6) gives

V1 =
∞
∑

m=1

2ρcbJ0(μmr)J1(μmb)
ε0μ2

ma2[J1(μma)]2 e−μmz
(

1
μm
) sinh ( μmL

2 ).

For potential inside of the cylindrical disk charge,

V2 =
∞
∑

m=1
∫

z

− L
2

ρcbJ0(μmr)J1(μmb)
ε0μ2

ma2
[J1(μma)]2

e−μm(z−z0)dz0

+ ∫

L/2

z

ρcbJ0(μmr)J1(μmb)
ε0μ2

ma2
[J1(μma)]2

e−μm(z0−z)dz0, (C7)

where we consider two conditions as z > z0, so ∣z − z0∣ = z − z0,
and z < z0, so ∣z − z0∣ = z0 − z as shown in Figs. 10(b) and 10(c).
Therefore,

V2 =
∞
∑
m=1

ρcbJ0(μmr)J1(μmb)
ε0μ2

ma2[J1(μma)]2
[e−μmz∫

z

− L
2

eμmz0 dz0 + eμmz∫
L
2

z
e−μmz0 dz0].

(C8)
The integration of Eq. (C8) gives

V2 =
∞
∑

m=1

2ρcbJ0(μmr)J1(μmb)
ε0μ3

ma2[J1(μma)]2 [1 − e−
μmL

2 cosh (μmz)].

FIG. 10. Space charge potential for (a) outside when z > z0, (b) inside when z
> z0, and (c) inside when z < z0, for positive z.
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In summary, the space charge potential outside and inside of
the cylindrical disk charge of radius b located from z = −L/2 to L/2
inside an earthed conducting cylinder of radius a is, respectively,

V1 =
2abρc

ε0

∞
∑

m=1

J1(μmb)J0(μmr)
(μma)3

[J1(μma)]2
e−μm ∣z∣ sinh(

μmL
2
) (C9)

for ∣z∣ > L
2 and

V2 =
2abρc

ε0

∞
∑

m=1

J1(μmb)J0(μmr)
(μma)3

[J1(μma)]2
[1 − e−

μmL
2 cosh (μmz)] (C10)

for ∣z∣ ≤ L
2 .

By integrating Eqs. (C9) and (C10) over r from 0 to b and taking
average over the disk surface, we get

Vavg1 =
∫

b
0 2πrV1dr

πb2 =
4a2ρc

ε0

∞
∑

m=1

1
(μma)4

× [
J1(μmb)
J1(μma)

]

2

e−μm ∣z∣ sinh(
μmL

2
) (C11)

for ∣z∣ > L
2 and

Vavg2 =
∫

b
0 2πrV2dr

πb2 =
4a2ρc

ε0

∞
∑

m=1

1
(μma)4

× [
J1(μmb)
J1(μma)

]

2

[1 − e−
μmL

2 cosh (μmz)] (C12)

for ∣z∣ ≤ L
2 .

Then, we differentiate Eqs. (C11) and (C12) in terms of z to get
the electric field, Esc = −

dVavg
dz , which reads

Esc1 = sgn (z)
4ρc

ε0

∞
∑

m=1

1
μm

[J1(μmb)]2

(μma)2
[J1(μma)]2

e−μm ∣z∣ sinh(
μmL

2
)

(C13)
for ∣z∣ > L/2 and

Esc2 =
4ρc

ε0

∞
∑

m=1

1
μm

[J1(μmb)]2

(μma)2
[J1(μma)]2

e−
μmL

2 sinh (μmz) (C14)

for ∣z∣ ≤ L/2.

APPENDIX D: EQUATION OF MOTION
AND KINETIC ENERGY

The equation of motion is m d
dt us = eE. If the force acts at right

angles to the direction of motion, then transverse mass, m0√
1− u2

0
c2

, is

used, but if the force acts in the direction of the motion of the elec-
trons, then longitudinal mass, m = m0

(1− u2
0

c2 )
3/2 , is used.18 Therefore, in

our case,

d
dt

us =
e

m0
(1 −

u2
0

c2 )

3/2

E. (D1)

In the presence of space charge, the equation of motion for the ith
disk is,18,26

dusi

dt
= η(1 −

u2
0

c2 )

3/2⎡
⎢
⎢
⎢
⎢
⎣

Ez(zi) cos (ωt) +
ND

∑

j=1
SC

Q
e

Esc1,2(zi − zj)

⎤
⎥
⎥
⎥
⎥
⎦

.

(D2)
Here, the number of electrons in one disk is Q

e , where Q is the charge
in the disk, Q = Ib

f ND
,26 f is the frequency, Ez(z) is the field due to the

gap given in Eq. (B4), and Esc1 and Esc2 are given by Eqs. (C13) and
(C14) with the shift of the center of the jth disk to zj, respectively,
with setting ρc =

q
πb2L =

e
πb2L .

The kinetic energy of a relativistic electron is KE = mc2
−m0c2,

where the relativistic mass is m = m0/

√

1 − u2
s

c2 and the charge

to mass ratio is η = e
m0

. Therefore, KE = m0c2
(1/
√

1 − u2
s

c2 − 1)

=
e
η c2
(1/
√

1 − u2
s

c2 − 1). Accordingly, the kinetic energy of the

charge disks at the kth time step is calculated by

KEk =
Q
η

c2
ND

∑

j=1

⎛

⎜

⎝

1/

¿

Á
ÁÀ1 −

u2
sk, j

c2 − 1
⎞

⎟

⎠

. (D3)
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