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ABSTRACT

We consider the steady-state limiting current that can be carried by an infinite periodic array of thin electron sheets spaced by period p in a
planar diode of gap voltage V and gap separation d. Our primary assumptions are as follows: (1) electron motion is restricted by an infinite
magnetic field to the direction normal to the electrode surfaces, (2) all electrons are emitted from the cathode with initial kinetic energy Ein,
and (3) electron motion is non-relativistic. The limiting current density, averaged over a period and normalized to the classical 1D Child–
Langmuir (CL) current density (including a factor that accounts for nonzero Ein), is found to depend only on the two dimensionless parame-
ters p/d and Ein/eV. This average limiting current density is computed from the maximum current density for which the iterative solution of
a non-linear integral equation converges. Numerical results and empirical curve fits for the limiting current are presented, together with an
analysis as p/d and Ein/eV approach zero or infinity, in which cases previously published results are recovered. Our main finding is that, while
the local anode current density within each electron sheet is infinite in our model (that is, it exceeds the classical 1D CL value by an “infinite”
factor), the period average anode current density is in fact still bounded by the classical 1D CL value. This study therefore provides further
evidence that the classical 1D Child–Langmuir current density is truly a fundamental limit that cannot be circumvented.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (http://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0187220

I. INTRODUCTION

Cathode performance is an important technical issue for many
applications.1–3 It is very difficult to characterize because of emission
nonuniformity,1,4–9 especially when there are actively emitting regions
that are highly localized on the cathode surface. These localized emis-
sion hot spots, which may arise from regions of low work functions in
a thermionic cathode for instance, could be the dominant contributors
to the anode current even though they occupy a small fraction of the
cathode area.7,8 Their presence prevents a routine characterization in
terms of the classical, one-dimensional (1D) Child–Langmuir law
(CLL),10,11 which specifies the maximum spatially uniform steady-
state current density that can flow between two infinite parallel plates
separated by a distance d, to which a potential difference V is applied,

JCL ¼ 4
ffiffiffi
2

p

9
�0

ffiffiffiffi
e
m

r
V3=2

d2
; (1.1)

where �e andm are the electron charge and mass, respectively, and �0
is the free space permittivity. Many attempts have been made to

generalize CLL to higher dimensions; an overwhelming majority failed
when the active emission site has a scale very small compared with the
anode–cathode spacing d.

Umstattd and Luginsland,12 Chernin et al.,7 and Jassem et al.8

have shown that the limit (1.1) may be exceeded locally, near the edge
of an emitting region, adjacent to a non-emitting region of the cathode
surface. The reason is simply that the absence of the space charge along
the non-emitting region means that additional charge must be present
near the edge of the emitting region in order to reduce the surface elec-
tric field to zero, which is the current limiting condition, also known as
the space-charge-limited condition. These papers7,8,12 demonstrate the
importance of highly localized emitting regions mentioned in the first
paragraph. Taking this effect to its limit, the present authors13 recently
showed that it is even possible to exceed JCL locally by an “infinite” fac-
tor, by showing that solutions exist for an isolated electron sheet of
infinitesimal width, though the existence of such solutions requires
that the electrons be emitted with a finite initial velocity. This discovery
led to the natural question whether the average current density of a
periodic array of such “d-function” sheets might exceed JCL (as
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modified to account for a finite emission velocity14). In the present
paper, we demonstrate that the answer to this question is “no,” thereby
providing further evidence that JCL is truly a fundamental limit that
cannot be exceeded.

This paper is organized as follows: Sec. II describes the model
and the governing integral equation that determines the limiting
current carried by periodic sheets of emitting electrons in a planar
diode. Section III presents the numerical results obtained from
this integral equation, together with an examination of the limit-
ing cases inaccessible from numerical computation. Section IV
concludes the study. The Appendices provide the mathematical
details for Secs. II and III, and an analytic fitting formula for the
numerical data.

II. FORMULATION

Our model consists of an infinite, periodic series of thin electron
sheets spaced by period p in a planar diode with gap separation d and
gap voltage V (Fig. 1). An infinite magnetic field in the z direction is
assumed so that all electron motions are restricted to the z direction.
The electron sheets are infinitesimally thin. All electrons are assumed
to be emitted from the cathode at z¼ 0 with the same energy
Ein ¼ eVin ¼ ð1=2Þmv2in. Since the solutions are periodic in x with
period p, we may focus on the single period,�p=2 � x � p=2; and on
the electron sheet at x¼ 0. Since all quantities are independent of y,
the electrostatic potential /ðzÞ on this electron sheet has only a z
dependence, and the velocity of an electron on this sheet is given by
v zð Þ ¼ ½ð2=mÞðEin þ e/ zð ÞÞ�1=2. The magnitude of the surface charge
density is r zð Þ ¼ M2=v zð Þ, whereM2 (>0, in A/m) is a constant mea-
suring the current carried by each electron sheet per unit length in y in
this two-dimensional model (Fig. 1). We remark thatM2 and its corre-
sponding dimensionless parameter K2 given in Eq. (2.2) below are the
same as in Ref. 13, where an isolated, single-electron sheet was consid-
ered [cf. Eq. (3.11) of Ref. 13].

The electrostatic potential /ðzÞ consists of two components, the
vacuum potential, Vz=d; and the potential due to the space charge on
all electron sheets, which are implicitly included in the periodic solu-
tions. The latter component is proportional to M2 and is derived in
Appendix A. This leads to the integral equation for /ðzÞ which, in
terms of the dimensionless variables �/ ¼ /=V; �z ¼ z=d; �zc ¼ zc=d,
reads

�/ �zð Þ ¼ �z � 2pK2

ð�z
0

�Gp 1� �z ;�zcð Þd�zc
�/ �zcð Þ þ D

� �1=2 þ
ð1
�z

�Gp �z ; 1� �zcð Þd�zc
�/ �zcð Þ þ D

� �1=2
( )

;

0 � �z � 1; (2.1)

K2 ¼ 2
9p

� M2

dJCL
� 2

9p
� p

d

� �
Jav
JCL

� �
; (2.2)

D ¼ Ein=eV; (2.3)

where K2 (>0) is the dimensionless parameter measuring the sheet cur-
rent, Jav ¼ M2=p (>0, in A/m2) is the average current density per
period, JCL is the 1D classical Child–Langmuir current density, Eq. (1.1),
and D is the dimensionless parameter measuring the injection energy of
the mono-energetic electrons. The dimensionless Green’s function in
Eq. (2.1) gives the electrostatic potential at z due to a line charge of unit
line charge density at z ¼ zc. It is given by (cf. Appendix A)

�Gp �z1;�z2ð Þ ¼ 1
�p
�z1�z2 þ f �z1;�z2ð Þ½ �; (2.4)

f �z1;�z2ð Þ ¼ 2
X1
n¼1

sinh �kn�z1
� �

sinh �kn�z2
� �

�kn sinh �kn
� � ; (2.5)

�p ¼ p=d; �kn ¼ 2np=�p: (2.6)

The limiting current on an electron sheet of the periodic array is given
by the maximum value of K2 beyond which there is no solution to the
integral equation (2.1). Note that �Gp �z1;�z2ð Þ depends only on �p and
that the maximum value of K2, denoted as K2 maxð Þ, depends only on
the two dimensionless parameters, D and �p. In Eq. (2.1), the first term
(�z) represents the vacuum potential, Vz=d, and the second term, pro-
portional to K2 orM2, represents the potential due to the space charge
from all electron sheets (Fig. 1). We shall show that, in the limit
�p ! 1, Eq. (2.1) reduces to the integral equation for a single, isolated
electron sheet that was treated in detail by Lau et al.13

As in Ref. 13, the integral equation (2.1) is solved iteratively for
finite, nonzero values of D and �p, starting with the vacuum field solution,
�/ �zð Þ ¼ �z . The approximate solution after the kth iteration is given by

�/
kð Þ

�zð Þ ¼ �z � 2pK2

ð�z
0

�Gp 1� �z ;�zcð Þd�zc
�/

k�1ð Þ
�zcð Þ þ D

� �1=2

8<
:

þ
ð1
�z

�Gp �z ; 1� �zcð Þd�zc
�/

k�1ð Þ
�zcð Þ þ D

� �1=2

9>=
>;;

k ¼ 1; 2; 3;…; �/
0ð Þ

�zð Þ ¼ �z : (2.7)

Since Green’s function �Gp is an infinite series that diverges logarithmi-
cally at �zc ¼ �z , the iterative solution for the maximum value of K2 is
computationally more demanding than the problem solved in Ref. 13.
The numerical algorithm to solve Eq. (2.7) iteratively is described
toward the end of Appendix A.

In Sec. III, we present the numerical data on the maximum value,
K2 maxð Þ; at various values of �p and D. In terms of K2 maxð Þ, the maxi-
mum period average current density, Jav maxð Þ, may be obtained from
Eq. (2.2),

Jav maxð Þ
JCL

¼ 9p
2
� K2 maxð Þ

�p
: (2.8)

FIG. 1. A two-dimensional planar diode of gap spacing d and gap voltage V .
Electrons are emitted from the cathode (z ¼ 0) in the z direction with initial energy
Ein, in the form of periodic electron sheets of separation p and infinitesimal thick-
ness (in red).
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This period average limiting current density is more conveniently
compared with the classical 1D CL value modified by a nonzero D.
With a nonzero D, Jaff�e14 modified Eq. (1.1) to read

JCL�J ¼ JCL � 1þ Dð Þ1=2 þ D1=2
h i3

: (2.9)

The maximum current density, averaged over a period and normalized
to JCL�J , denoted by �Jmax, becomes

�Jmax D; �pð Þ � Jav maxð Þ
JCL�J

¼ 9p
2
� K2 maxð Þ
�p 1þ Dð Þ1=2 þ D1=2
h i3 : (2.10)

The value of �Jmax D; �pð Þ was determined using a simple bisection algo-
rithm described in the last paragraph of Appendix A.

III. LIMITING CURRENT ON PERIODIC ELECTRON
SHEETS

Figure 2 shows �Jmax D; �pð Þ as a function of �p for various values of
D. Figure 3 shows �Jmax as a function of D for various values of �p. Data
are obtained only for a limited range in D: D ¼ 0:001; 0:01; 0:1;
2; 10, and in �p: �p ¼ 0:05 up to 3. The numerical fits for the data
(Appendix E) within these ranges of D and �p are shown by the dashed
curves in Figs. 2 and 3. The analytic properties of K2 maxð Þ, in the lim-
its of D and �p approaching zero and infinity, are summarized in this
section. The details are given in the Appendices.

Figures 2 and 3 reveal the following properties of �Jmax.

(A) As �p ! 0, �Jmax ! 1. This may be expected intuitively, because
in this case, the periodic electron sheets are packed together
infinitely closely, since �p ¼ p=d ! 0. The average (or period
average) limiting current density should then approach the
classical 1D Child–Langmuir law, corrected by Jaff�e for non-
zero D, Eq. (2.9). This is proven in Appendix B. Note that Eq.
(2.10) yields the analytic result on K2 maxð Þ for this case

K2 maxð Þ ¼ 2
9p

�p 1þ Dð Þ1=2 þ D1=2
h i3

; �p ! 0: (3.1)

(B) As �p ! 1, the sheet separation is infinite, and one electron
sheet is unaffected by any of its neighbors (Fig. 1). The maxi-
mum current in this limit must be the same as that for a single,
isolated electron sheet.13 Appendix C shows that, as �p ! 1,
K2 maxð Þ obtained from Eq. (2.1) indeed reduces to K2 Dð Þ for a
single, isolated electron sheet that is shown in Fig. 6 of Ref. 13.
Since K2 Dð Þ is finite for all D, Eq. (2.10) gives the following
expression for �Jmax in this single sheet limit:

�Jmax D; �p ! 1ð Þ ¼ 9p
2
� K2 Dð Þ
�p 1þ Dð Þ1=2 þ D1=2
h i3 : (3.2)

When the period is infinite, the period average current density
must be zero, as confirmed by Eq. (3.2), and suggested in Figs.
2 and 3. From Fig. 6 of Ref. 13, an excellent fitting formula for
K2 Dð Þ at small D reads

K2 Dð Þ ffi 0:2336� D0:5274; 0 < D < 0:01: (3.3)

(C) As D ! 0, �Jmax ! 0 for all nonzero values of �p. This trend is sug-
gested in Figs. 2 and 3, and its validity may be demonstrated with
the following argument. When �p is finite and nonzero, the Green’s
function �Gp that appears in both integrals in Eq. (2.1) may be
shown to contain a logarithmic singularity at �zc ¼ �z . [This loga-
rithmic singularity also appears in Eq. (B6) in the �p ! 0 limit, and
in Eq. (C7) in the �p ! 1 limit.] If D ¼ 0, this singularity at �zc ¼
�z always leads to an arbitrarily large positive value for the curly
bracket in Eq. (2.1) at some �z 2 ð0; 1Þ, thus forcing a null value of
K2 as the only solution to Eq. (2.1). Such null solutions were exam-
ined in great detail and properly interpreted in Ref. 13. Comparing
(A) with (C), one observes nonuniform convergence of �Jmax D; �pð Þ
in the double limits, D ¼ 0 and �p ¼ 0. It is this nonuniform con-
vergence that led to the considerable difficulty in the numerical
solution to the integral equation (2.7), especially in the limit
D ! 0.

FIG. 2. The limiting current density �Jmax D;�pð Þ, averaged over a period and normal-
ized to the Child–Langmuir–Jaff�e value Eq. (2.9), as a function of �p for various val-
ues of D. The triangles represent the solutions to the integral equation (2.1), and
the dashed lines represent the numerical fit (see Appendix E). Note that the D ¼ 2
and D ¼ 10 curves are indistinguishable on the scale shown (see Appendix D).

FIG. 3. The limiting current density �Jmax D;�pð Þ, averaged over a period and normal-
ized to the Child–Langmuir–Jaff�e value Eq. (2.9), as a function of D for various val-
ues of �p. The triangles represent the solutions to the integral equation (2.1) and the
dashed lines represent the numerical fit (see Appendix E).
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(D) As D ! 1, �Jmax is independent of D at a fixed value of �p. This
statement is proved in Appendix D. This explains why the D ¼ 2
and D ¼ 10 curves in Fig. 2 are almost indistinguishable, and why
all curves in Fig. 3 become horizontal at large D. Note that the
mathematical limit D ! 1 corresponds to the physically signifi-
cant limit of a short circuit diode in Fig. 1, because in this case, we
may consider the gap voltage V ! 0 so that D ¼ Ein=eV ! 1
at any fixed, nonzero injection energy Ein of the electrons. The
governing equation for and the solution to �Jmax are described in
Appendix D for this infinite D limit. We also point out in
Appendix D that the curve �Jmax Dð ¼ 1; �pÞ as a function of �p is
indistinguishable from the D ¼ 2 and D ¼ 10 curves in Fig. 2.

(E) Since �Jmax D; �pð Þ could not be computed readily from the integral
equation (2.1), and Figs. 2 and 3 exhibit complex features, we
include in Appendix E a formula that provides a ready-to-use ana-
lytical fit for �Jmax D; �pð Þ over the ranges of D and �p shown:
D ¼ 0:001; 0:01; 0:1; 2; 10, and �p ¼ 0:05 up to 3. This analytical
fit is included in Figs. 2 and 3 where excellent agreement is noted
in its comparison with the numerical results from the integral
equation. The analytical fit over this finite range, together with the
asymptotic properties outlined in (A)–(D) above, could be useful
for future design in 2D vacuum microelectronics.

IV. CONCLUDING REMARKS

This paper shows that, while each electron sheet may carry a
local current density that is infinitely large compared with the
Child–Langmuir–Jaff�e value, Eq. (2.9), the average current density of
a periodic array of such sheets may approach this value, but never
exceeds it. Likewise, in 2D and 3D simulations of thermionic catho-
des even with highly localized active emission regions,7,8,12 the aver-
age anode current density may approach, but never exceed the
classical CLL that includes a small thermal correction to Eq.
(1.1).11,15 This strongly suggests that the 1D classical CLL is a hard
limit that cannot be exceeded, in thermal or non-thermal 2D or 3D
models over vastly different forms and degrees of emission nonuni-
formity. This speculation applies regardless of the cathode’s material
properties and is drawn from extensive analyses under the assump-
tion of a smooth cathode surface.

When cathode surface roughness is present, local enhancement of
the surface electric field could lead to strong local field emission of elec-
trons. One might argue that such a strong local emission might produce
additional, local hot spots, whose effects qualitatively resemble a modifi-
cation of the local work function or local surface temperature on an
otherwise flat emitting surface. Using this argument, one might venture
that the average anode current density is bounded by the 1D CLL under
steady-state operation for all types of cathodes, whether they be therm-
ionic, field emission, plasma-based, or photo-cathodes. Note that
the CLL may also be interpreted as a restriction on the total charge,
Q� CV, imposed on a diode of vacuum capacitance C.16–18

For pulsed operation, especially when the pulse length is less than
the electron transit time across the diode, the instantaneous current
density on the anode might exceed the 1D CLL, but the total charge Q
within the diode is still found to be bounded by Q � CV, just like the
steady-state operation.19 Thus, Q � CV appears to govern the maxi-
mum total charge within a diode in general, whether the electron emis-
sion is uniform in space or in time, and is independent of the emission
mechanism or the conditions of the cathode surface.
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APPENDIX A: DERIVATION OF EQ. (2.1)

In this Appendix, we outline the derivation of Eq. (2.1) and
summarize the numerical algorithm for its solution. In Fig. 1, the
electrons are acted upon by the electric field produced by the com-
bination of an applied potential difference V between the plates and
the space charge of all of the sheets. It suffices to consider a single
period, �p=2 � x � p=2; 0 � z � d, and the electron sheet at
x ¼ 0 (Fig. 1). All quantities are independent of y. We assume an infi-
nite magnetic field in the z direction, since it was established that the
limiting current is insensitive to the imposed longitudinal magnetic
field.7,8,12 All electrons are emitted at z ¼ 0 in the z direction with
kinetic energy Ein ¼ mv2in=2. The current density J x; zð Þ ¼ M2d xð Þ
whereM2 ð> 0Þ is a constant, independent of z, and d is the Dirac delta
function. Poisson’s equation for the potential U x; zð Þ is then

@2

@x2
þ @2

@z2

� �
U x; zð Þ ¼ M2

e0vin

d xð Þ

1þ e/ zð Þ
Ein

� �1=2
� S zð Þd xð Þ; (A1)

where we have defined the source strength S zð Þ and where
/ zð Þ � U 0; zð Þ is the potential encountered by the electrons
within the sheet. We require the potential U x; zð Þ to satisfy the
boundary conditions U x; 0ð Þ ¼ 0, U x; dð Þ ¼ V and U �p=2; zð Þ
¼ U þp=2; zð Þ. Our goal is to find an equation for / zð Þ.

We begin by expanding the potential in a cosine series in x,

U x; zð Þ ¼ 1
2
U0 zð Þ þ

X1
n¼1

Un zð Þcos knxð Þ (A2)

where kn ¼ 2pn=p and the coefficient functions Un zð Þ are given by
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Un zð Þ ¼ 2
p

ðp=2
�p=2

dxU x; zð Þcos knxð Þ: (A3)

Using the formal expansion of the delta function,

d xð Þ ¼ 1
p
þ 2
p

X1
n¼1

cos knxð Þ; (A4)

it follows from Eq. (A1) that the coefficient functions must satisfy

d2

dz2
� k2n

� �
Un zð Þ ¼ 2

p
S zð Þ; (A5)

along with the boundary conditions Un 0ð Þ ¼ 0 and
Un dð Þ ¼ 2Vdn;0, where dn;m is the Kronecker delta. The general
solution of Eq. (A5) satisfying the boundary condition at z ¼ 0 is

U0 zð Þ ¼ 2
p

ðz
0
dz0 z � z0ð ÞS z0ð Þ þ F0 z=pð Þ; (A6)

Un zð Þ ¼ 2
knp

ðz
0
dz0sinh kn z � z0ð Þ	 


S z0ð Þ þ Fnsinh knzð Þ for n > 0;

(A7)

where Fn; n ¼ 0; 1; 2;… are constants, determined by applying the
boundary conditions at z ¼ d. Substituting (A6) and (A7) in (A2)
and setting x ¼ 0 gives the following non-linear integral equation
for / zð Þ:

/ zð Þ ¼ Vz=d �
ðz
0
dzcG d � z; zcð ÞS zcð Þ �

ðd
z
dzcG z; d � zcð ÞS zcð Þ;

(A8)

which is the dimensional form of Eq. (2.1) in the main text, where

G z1; z2ð Þ � z1z2
pd

þ 2
X1
n¼1

sinh knz1ð Þsinh knz2ð Þ
knpð Þsinh kndð Þ: (A9)

The sum in Eq. (A9) converges when z1 þ z2 < d, but diverges
logarithmically when z1 þ z2 ¼ d. Consequently, the integrands in
Eq. (A8) have logarithmic singularities at the endpoints zc ¼ z,
which require careful numerical treatment. See Ref. 13 for a discus-
sion of this logarithmic singularity, which also occurs below in
Eqs. (B6) and (C8).

Numerical algorithms for the iterative solutions

Equation (2.1) is solved iteratively using Eq. (2.7). The iteration
proceeds until one of three things happen: (1) The fractional differ-

ence between �/
kð Þ

�zð Þ and �/
k�1ð Þ

�zð Þ is less than a specified maxi-
mum for all points on the z-grid, (2) the argument of the square
root in Eq. (2.7) becomes negative at any grid point, or (3) a maxi-
mum number of iterations is reached. The iteration is considered to
be converged if and only if (1) is satisfied. For the numerical results
shown in Figs. 2 and 3, we used 10�6 for the maximum fractional
difference in the convergence condition (1) and 200 for the maxi-
mum number of iterations in (3). All calculations used 20 000 steps
in the interval �z ¼ 0; 1½ � to evaluate the integrals. This large number
is required to resolve the potential minimum for small values of D.
The integrals were evaluated using the “midpoint” method,

described in Appendix B of Ref. 13. The sum in Eq. (2.5) was trun-
cated when the nth term was less than 10�6 times the previously
accumulated sum.

The value of �Jmax D; �pð Þ in Eq. (2.10) was determined using a
simple bisection algorithm, as follows: For an assigned pair of non-
zero value D; �pð Þ, we start with values of �J that bracket the expected
value of �Jmax; in particular, we start with �J 1 ¼ 0 and �J 2 ¼ 2, such
that we anticipate that the iteration (2.7) will converge for �J ¼ �J 1
and will not converge for �J ¼ �J 2. We then try the iteration (2.7) for
a value of �Jmid � �J 1 þ �J 2ð Þ=2. If this iteration converges, we assign a
new value for �J 1 ¼ �Jmid ; if the iteration does not converge, we assign
a new value for �J 2 ¼ �Jmid . We repeat this bisection 12 times, which
gives us �J max to an accuracy of 2=212, or approximately 5� 10�4.

APPENDIX B: THE LIMIT �p ! 0

We first show that in the limit �p ! 0, the term f �z1;�z2ð Þ in Eq.
(2.4) contributes negligibly to both integrals in Eq. (2.1), in compar-
ison with its preceding term, �z1�z2. As �p ! 0, all “sinh” terms in Eq.
(2.5) are exponentially large. We may thus write

f �z1;�z2ð Þ �
X1
n¼1

1
2np=�pð Þ e

� 2np=�pð Þþ 2np=�pð Þ �z 1þ�z 2ð Þ: (B1)

Using Eq. (2.4) in Eq. (2.1), we see that �z1þ�z2 ¼ 1� �z � �zcð Þ for
the first integral in Eq. (2.1) and that �z1þ�z2 ¼ 1þ �z � �zcð Þ for the
second integral in Eq. (2.1). For both integrals, we may write in the
compact form

�z1þ�z2 ¼ 1� �z � �zcj j; (B2)

and Eq. (B1) becomes

f �z1;�z2ð Þ ¼ �p
2p

g nð Þ; �p ! 0ð Þ; (B3)

g nð Þ ¼
X1
n¼1

1
n
e�nn; n ¼ 2p �z � �zcj j=�p: (B4)

In Eq. (B4), the infinite sum for g nð Þ converges for all n except at
n¼0. As n!0, we approximate dg nð Þ=dn¼�P1

n¼1 e
�nn¼�e�n=

1�e�nð Þffi�1=n. Integrating and using Eq. (B4), we obtain

g nð Þ ffi �ln nj j ¼ �ln 2pð Þ þ ln �pð Þ � ln �z � �zcj j; n ! 0ð Þ: (B5)

Substitute Eq. (B5) into Eq. (B3) to obtain

f �z1;�z2ð Þ ffi �p
2p

�ln 2pð Þ þ ln �pð Þ � ln �z � �zcj j	 

; �z ! �zc; �p ! 0ð Þ:

(B6)

Note that the logarithmic singularity at �zc ¼ �z in Eq. (B6) is inte-
grable in both integrals in Eq. (2.1), upon using Eq. (2.4). Equations
(B6) and (B3) thus show that, as �p ! 0, the contribution from
f �z1;�z2ð Þ is negligible compared with the first term in Eq. (2.4) and
we may approximate

�Gp �z1;�z2ð Þ ’ �z1�z2
�p

; (B7)

for both integrals in Eq. (2.1). Upon substituting Eq. (B7) into Eq.
(2.1), Eq. (2.1) is identical to Eq. (3.4) of Lau et al.,13 in which the
parameter K1 ¼ 2pK2=�p ¼ 4=9ð ÞJ=JCL may be identified. Including
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Jaff�e’s correction for nonzero D, Eq. (2.9), this means
K2 ¼ K2 maxð Þ, where

K2 maxð Þ ¼ 2
9p

�p 1þ Dð Þ1=2 þ D1=2
h i3

; �p ! 0; (B8)

which is Eq. (3.1).

APPENDIX C: THE LIMIT �p !‘

As �p ! 1, the first term in Eq. (2.4) vanishes, leaving behind
the second term,

�Gp �z1;�z2ð Þ ¼ f �z1;�z2ð Þ
�p

¼ 2
�p

X1
n¼1

sinh �kn�z1
� �

sinh �kn�z2
� �

�kn sinh �kn
� � � �G1 �z1;�z2ð Þ:

(C1)

Since �kn ¼ 2np=�p, the infinite sum in Eq. (C1) may be converted
into an integral as �p ! 1, with the substitutions,

�kn ! k; 1=�p ! dk=2p;
X1
n¼1

! �p=2pð Þ
ð1
0
dk; (C2)

�G1 �z1;�z2ð Þ ¼ 1
p

ð1
0

dk
k
sinh k�z1ð Þ sinh k�z2ð Þ

sinh kð Þ : (C3)

We next differentiate Eq. (C3) with respect to �z1 to obtain

@�G1=@�z1 ¼ 1
p

ð1
0
dk

cosh k�z1ð Þ sinh k�z2ð Þ
sinh kð Þ

¼ 1
4

tan
p
2

�z1þ�z2ð Þ
� �

� tan
p
2

�z1��z2ð Þ
� �� �

; (C4)

where we have used the identity, cosh xð Þsinh yð Þ ¼ sinh x þ yð Þ	
�sinh x � yð Þ�=2, and

ð1
0
dk

sinh kzð Þ
sinh kð Þ ¼ p

2
tan

p
2
z

� �
; (C5)

to derive the last expression of Eq. (C4). Integrating Eq. (C4) with
respect to �z1, we have

�G1 �z1;�z2ð Þ ¼ � 1
2p

ln
cos

p
2

�z1þ�z2ð Þ
� �

cos
p
2

�z1��z2ð Þ
� �




; (C6)

which yields

�Gp 1� �z ;�zcð Þ ¼ �Gp �z ; 1� �zcð Þ

¼ � 1
2p

ln

sin p
2

��z þ �zcð Þ
� �

sin
p
2

�z þ �zcð Þ
� �

2
6664

3
7775; �p ! 1: (C7)

Substitution of Eq. (C7) into Eq. (2.1) yields

�/ �zð Þ ¼ �z þ K2

ð1
0

d�zc
�/ �zcð Þ þ D

� �1=2 ln

sin p
2

��z þ �zcð Þ
� �

sin
p
2

�z þ �zcð Þ
� �

2
6664

3
7775;

0 � �z � 1; �p ! 1ð Þ; (C8)

which is identical to Eq. (3.10) of Ref. 13, the integral equation for
an isolated, single-electron sheet whose normalized limiting current,
K2, is shown in Fig. 6 of Ref. 13 as a function of D. This curve gives
K2 Dð Þ, which is thus the same as K2 maxð Þ in Eq. (2.10) in the limit
�p ! 1, yielding Eqs. (3.2) and (3.3) of the main text.

APPENDIX D: THE LIMIT D ! ‘

The limit D ¼ Ein=eV ! 1 may either be treated as letting
Ein ! 1 at a fixed nonzero V , or letting V ! 0 at a fixed nonzero
Ein. We find it more convenient to treat the V ! 0 limit at a
finite, nonzero value of Ein. Note that the mathematical limit V !
0 corresponds to a short circuit diode physically (Fig. 1). When
V ! 0, the vacuum potential vanishes, and only the space-charge
potential remains. That is, the first term, �z , in Eq. (2.1) can be
dropped, since it originates from the vacuum potential, Vz=d.
Keeping all other terms, and defining �w � e/=Ein ¼ �/=D, Eq.
(2.1) reads

�w �zð Þ ¼ �KD

ð�z
0

�Gp 1� �z ;�zcð Þd�zc
�w �zcð Þ þ 1

� �1=2 þ
ð1
�z

�Gp �z ; 1� �zcð Þd�zc
�w �zcð Þ þ 1

� �1=2
( )

;

0 � �z � 1; (D1)

where KD (>0) measures the normalized sheet current in this limit,
D ! 1. The limiting current is determined by the maximum value
of KD beyond which there is no solution to the integral equation
(D1). Since �Gp �z1;�z2ð Þ depends only on �p, this maximum value of
KD, denoted as KDmaxð�pÞ, is a function of �p alone. Comparing Eqs.
(D1) and (2.1), Eq. (2.10) yields

�J max D ¼ 1; �pð Þ ¼ 9
32

� KDmax �pð Þ
�p

: (D2)

We have solved the integral equation (D1) iteratively to obtain
KDmaxð�pÞ, similar to Eq. (2.7), but starting with the vacuum field
solution, �w �zð Þ ¼ 0. This null vacuum solution followed from Eq.
(D1) with KD ¼ 0, clearly expected when the gap voltage V ¼ 0.

We find that the data points obtained from the iterative solu-
tion of Eq. (D1) are indistinguishable from the data points for
D ¼ 10 (and for D ¼ 2) in Fig. 2, for all nonzero values of �p.

APPENDIX E: FITTING FORMULAS FOR �Jmax D; �pð Þ
The numerical results for �Jmax D; �pð Þ obtained from the solutions

of the integral equation (2.1) may be approximated by the following fit-
ting expressions, over the ranges of D and �p shown in Figs. 2 and 3:

�J fit D; �pð Þ ¼ tanh
1

�pa Dð Þ
� �

þ c Dð Þ �1þ cos b Dð Þ�p� �� �
e�b Dð Þ�p ;

0:001 < D < 10; 0:05 < �p < 3: (E1)

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 022103 (2024); doi: 10.1063/5.0187220 31, 022103-6

VC Author(s) 2024

 05 April 2024 16:51:45

pubs.aip.org/aip/php


Here, a Dð Þ; b Dð Þ; and cðDÞ can all be approximated using the fol-
lowing fitting model:

gfit Dð Þ ¼ n1 lnDð Þ4 þ n2 lnDð Þ3 þ n3 lnDð Þ2 þ n4lnDþ n5;

0:001 < D < 10; (E2)

where g represents, separately, a; b; and c. The ni (i ¼ 1; 2; 3; 4; 5)
values in Eq. (E2) are given in Table I. The fitting formula, Eq. (E1),
is shown by the dashed curves in Figs. 2 and 3. The deviation
between Eq. (E1) and the data points obtained from the integral
equations is within 0:0369%. The fitting formula was obtained using
MATLAB’s Curve Fitting Toolbox. The sum of squares due to error
(SSE) between Eq. (E1) and the data points obtained from the inte-
gral equations are 1:292� 10�29, 5:443� 10�29, and 1:387� 10�32

for a; b; and c, respectively, and each fit had R-squared values very
close to 1.

REFERENCES
1A. S. Gilmour, Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field
Amplifiers, and Gyrotrons (Artech House, Norwood, MA, 2011).
2R. J. Umstattd, D. Abe, J. Benford, D. Gallagher, R. M. Gilgenbach, D. M.
Goebel, M. S. Litz, and J. A. Nation, “Cathodes and electron guns,” in High-
Power Microwave Sources and Technologies, edited by R. J. Barker and E.
Schamiloglu (IEEE Press, Piscataway, NJ, 2001), Chap. 9, pp. 284–324.

3K. L. Jensen, Introduction to the Physics of Electron Emission (Wiley, Hoboken,
NJ, 2017).

4M. J. Cattelino, G. V. Miram, and W. R. Ayers, “A diagnostic technique for
evaluation of cathode emission performance and defects in vehicle assembly,”
in International Electron Devices Meeting, San Francisco, CA, 1982.

5E. A. Adler and R. T. Longo, “Effect of nonuniform work function on space-
charge-limited current,” J. Appl. Phys. 59(4), 1022–1027 (1986).

6R. Vaughan, “A synthesis of the Longo and Eng cathode emission models,”
IEEE Trans. Electron Devices 33(11), 1925–1927 (1986).

7D. Chernin, Y. Y. Lau, J. J. Petillo, S. Ovtchinnikov, D. Chen, A. Jassem, R.
Jacobs, D. Morgan, and J. H. Booske, “Effect of nonuniform emission on
Miram curves,” IEEE Trans. Plasma Sci. 48(1), 146–155 (2020).

8A. Jassem, D. Chernin, J. J. Petillo, Y. Y. Lau, A. Jensen, and S. Ovtchinnikov,
“Analysis of anode current from a thermionic cathode with a 2-D work func-
tion distribution,” IEEE Trans. Plasma Sci. 49(2), 749–755 (2021).

9D. Chen, R. Jacobs, D. Morgan, and J. Booske, “Physical factors governing the
shape of the Miram curve knee in thermionic emission,” IEEE Trans. Electron
Devices 70(3), 1219–1225 (2023).

10C. D. Child, “Discharge from hot CaO,” Phys. Rev. Ser. I 32(5), 492–511
(1911).

11I. Langmuir, “The effect of space charge and initial velocities on the potential
distribution and thermionic current between parallel plane electrodes,” Phys.
Rev. 21(4), 419–435 (1923).

12R. J. Umstattd and J. W. Luginsland, “Two-dimensional space-charge-limited
emission: Beam-edge characteristics and applications,” Phys. Rev. Lett. 87(14),
145002 (2001).

13Y. Y. Lau, D. Li, and D. P. Chernin, “On the Child-Langmuir law in one, two,
and three dimensions,” Phys. Plasmas 30(9), 093104 (2023).

14G. Jaff�e, “On the currents carried by electrons of uniform initial velocity,” Phys.
Rev. 65(3–4), 91–98 (1944).

15T. C. Fry, “The thermionic current between parallel plane electrodes; velocities of
emission distributed according to Maxwell’s law,” Phys. Rev. 17(4), 441–452 (1921).

16R. J. Umstattd, C. G. Carr, C. L. Frenzen, J. W. Luginsland, and Y. Y. Lau, “A
simple physical derivation of Child–Langmuir space-charge-limited emission
using vacuum capacitance,” Am. J. Phys. 73(2), 160–163 (2005).

17P. Zhang, �A. Valfells, L. K. Ang, J. W. Luginsland, and Y. Y. Lau, “100 years of
the physics of diodes,” Appl. Phys. Rev. 4(1), 011304 (2017).

18Y. Y. Lau, J. Krall, M. Friedman, and V. Sirlin, “On certain theoretical aspects of
relativistic klystron amplifiers,” Proc. SPIE 1061, 48–59 (1989).

19�A. Valfells, D. W. Feldman, M. Virgo, P. G. O’Shea, and Y. Y. Lau, “Effects of
pulse-length and emitter area on virtual cathode formation in electron guns,”
Phys. Plasmas 9(5), 2377–2382 (2002).

TABLE I. Values of the fitting coefficients ni (i ¼ 1; 2; 3; 4; 5) for a Dð Þ;b Dð Þ; and
cðDÞ.

Coefficients in (E2) a b c

n1 0.002 393 �0.008 358 0.000 367
n2 �0.012 280 �0.102 000 0.001 815
n3 0.031 840 0.169 800 �0.003 380
n4 �0.058 670 0.389 000 �0.009 625
n5 1.579 000 4.985 000 0.207 600

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 022103 (2024); doi: 10.1063/5.0187220 31, 022103-7

VC Author(s) 2024

 05 April 2024 16:51:45

https://doi.org/10.1063/1.336535
https://doi.org/10.1109/T-ED.1986.22844
https://doi.org/10.1109/TPS.2019.2959755
https://doi.org/10.1109/TPS.2020.3048097
https://doi.org/10.1109/TED.2023.3239058
https://doi.org/10.1109/TED.2023.3239058
https://doi.org/10.1103/PhysRevSeriesI.32.492
https://doi.org/10.1103/PhysRev.21.419
https://doi.org/10.1103/PhysRev.21.419
https://doi.org/10.1103/PhysRevLett.87.145002
https://doi.org/10.1063/5.0169276
https://doi.org/10.1103/PhysRev.65.91
https://doi.org/10.1103/PhysRev.65.91
https://doi.org/10.1103/PhysRev.17.441
https://doi.org/10.1119/1.1781664
https://doi.org/10.1063/1.4978231
https://doi.org/10.1117/12.951776
https://doi.org/10.1063/1.1463065
pubs.aip.org/aip/php

