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A one-dimensional small-signal theory for the backward-wave mode in a traveling-wave tube

(TWT) is developed, which includes the effects of random fabrication errors. This is of interest

since the backward-wave mode is the spatial harmonic typically responsible for instability in a

TWT. The described model examines how gain and instantaneous 1-dB bandwidth of the backward-

wave mode is affected by random fabrication errors, which are modeled as random perturbations of

the phase velocity, interaction impedance, and loss along the TWT’s length. Random variation of

the phase velocity is found to have the largest effect on both the backward-wave gain and the

bandwidth while having only a minor effect on fundamental, forward-wave mode behavior. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4792666]

I. INTRODUCTION

Vacuum electronic amplifiers offer significant potential

for high output power with relatively high efficiency, band-

width, and overall performance in the millimeter-wave

(mm-wave) and terahertz (THz) regimes for radar, commu-

nications, electronic warfare, and scientific applications.1,2

With nominal feature sizes proportional to their operational

wavelengths (approximately 1 to 0.1 mm), the dimensional

accuracy and precision required to fabricate these devices

become increasingly stringent. A single fabrication error on

the order of even a few microns can represent a significant

deformation to a structure of this size.

For any spatially periodic structure, such as a helix slow-

wave structure (SWS) in a traveling-wave tube (TWT), the

total electromagnetic (EM) wave propagating along its length

can be described as a sum of spatial harmonic modes that all

have the same frequency but different propagation vectors.3

In the case of the helix SWS, the “fundamental” or “forward”

mode is the lowest order mode and represents a wave

with a phase and group velocity in the þz direction. The

“backward-wave” mode is a separate spatial harmonic mode

and represents a wave with an effective phase velocity in the

þz direction but a group velocity in �z. Thus, the backward-

wave mode can still exchange energy with the traveling elec-

tron beam in a TWT (also traveling in the þz-direction) even

though its energy flow is in the opposite direction. The cou-

pling of energy to the backward-wave mode is the primary

cause of unwanted oscillations in a TWT that is designed to

be an amplifier.

Pierce theory4–6 has been previously adapted to analyze

the effects of random fabrication errors on the fundamental,

forward-wave mode.7,8 Similarly, Chernin et al.9 have

explored the effect of random fabrication errors on TWT

gain and output phase including the effect of multiple inter-

nal RF reflections from arbitrarily positioned discontinuities

(i.e., fabrication errors). They observed that both the gain

and the insertion phase of the TWT were more significantly

impacted than were originally reported by Pengvanich et al.7

They also observed that these reflections could cause signifi-

cant gain ripple versus frequency.

Building on the work by Pengvanich et al., we reformu-

lated the Pierce-type model to be applicable for the backward-

wave mode in a TWT with random fabrication errors and a

finite space-charge electron beam. This allowed us to examine

the impact of fabrication errors (encoded as random variations

in the Pierce parameters along the length of the simulated

TWT) on backward-wave gain and bandwidth.

II. THEORY

The model is derived in a similar manner as was done

for the fundamental forward-wave mode7,8 but is reformu-

lated for the backward-wave mode and includes the effect of

space charge on the electron beam. There are two necessary

equations to formulate this model, namely, the “electronic”

and “circuit” equations. The “electronic” equation, which

describes the motion of the electrons in the TWT, is given as

@
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þ jbe

� �2

þ b2
q

" #
s ¼ a; (1)

where be � x=u0 is the wavenumber associated with the

electron beam disturbance, x is the operational frequency of
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the TWT, and u0 is the dc velocity of the electron beam. The

parameter bq � xq=u0 is the reduced space-charge wave-

number where xq � Rscxp, Rsc is the “plasma frequency

reduction” factor5,6,10 in which the beam’s plasma frequency

is given by x2
p � eq=ðm�0Þ, q is the volume charge density

of the beam, e and m are the charge and rest mass of an elec-

tron, respectively, and �o is the permittivity of free space.

MKS units were used for all variables.

The Rsc is introduced to acknowledge that the space

charge force term is not only linearly related to the charge

density in the electron bunches of the beam but also limited

by the fact that the electron beam is finite in diameter and in

close proximity to image charges in nearby conducting surfa-

ces. The value of Rsc does not impact the conclusions that

can be drawn from the model however. Instead of attempting

to use accurate predictions for the value of Rsc, we opt to

vary the value of the normalized Pierce parameter for space

charge, 4QC, which, by definition, includes Rsc. The determi-

nation of Rsc is beyond the scope of this work.

The variable, s ¼ ~i
0
1, is a variable substitution for the ac

beam current used to make the nomenclature match previous

work.7,8 The parameter a � �jek0b
2
e

~E0 z=ðmxÞ is the normal-

ized electric field acting on the electron beam element where

k0 is the linear charge density of the beam and ~E0 z represents

the complex magnitude of the axially directed electric field

of the RF wave propagating along the SWS. Equation (1) is

the same as the electronic equation used for the fundamental

forward-wave mode8 since they both describe the same elec-

tron beam.

The “circuit” equation describes the behavior of the RF

wave on the SWS induced by the beam’s modulated current.

Since the goal is to model a backward-wave mode in a TWT,

this equation is derived from a transmission-line model in

which the phase and group velocities travel in opposite direc-

tions.4,6,11 Doing so gives

@

@z
þ jbp � bpCd

� �
a ¼ jðbeCÞ3s; (2)

where bp � x=vp is the “cold” circuit wavenumber of the

RF field as it propagates on the SWS without the beam

present and vp is the cold circuit phase velocity. The pa-

rameter, C3 � I0K=ð4V0Þ, is the dimensionless Pierce gain

parameter where I0 is the dc electron beam current and V0

is the beam voltage corrected for space charge depression.

The Pierce interaction impedance of the circuit is given by

K � jEzj2=ð2b2
pPzÞ where Ez is the axial component of

electric field of the RF wave on the circuit and Pz is the

total RF power flowing along the SWS as given by

Poynting’s theorem. The parameter, d, is the normalized

cold circuit loss rate which is greater than zero.

Comparing the circuit equations of the backward-wave

mode given here with the fundamental forward-wave mode,8

it is observed that the only difference between the two are

negative signs on the d and s terms. The sign of the loss pa-

rameter, d, ensures that RF loss rate occurs in the same direc-

tion as the group velocity of each respective mode while the

sign of s is determined from the underlying circuit model

from which each mode’s circuit equation is derived. This

corresponds well with conventional Pierce theory (without

fabrication errors) where previous authors4,5 have shown that

the fundamental forward-wave and backward-wave circuit

equations differ by similar negative signs.

Invoking Ramo’s theorem,12 we assume that the modu-

lated electron current in the electron beam induces equiva-

lent currents in the SWS. This allows Eqs. (1) and (2) to be

combined to form a single 3rd-order differential equation.

This is simplified by first defining a normalization variable,

f, such that

s ¼ e�jbezf ðxÞ ¼ e�jxf ðxÞ; (3)

where x � bez is the phase length along the SWS.

Combining Eqs. (1) through (3) gives

d3f ðxÞ
dx3

þ jCðbþ jdÞ d
2f ðxÞ
dx2

þ C2ð4QCÞ df ðxÞ
dx

þ jC3½ð4QCÞðbþ jdÞ � 1�f ðxÞ ¼ 0; (4)

where b � ðbp � beÞ=ðbeCÞ ¼ ðu0 � vpÞ=ðvpCÞ is the Pierce

velocity parameter, and 4QC� ½bq=ðbeCÞ�2 ¼ R2
scx

2
p=ðx2C2Þ

is the Pierce space-charge parameter. For a given TWT

design, the value of 4QC for the backward wave mode is

likely different than for the forward wave mode. However,

estimates using conventional formulas13 indicate that the val-

ues of 4QC will likely not be different enough to significantly

impact our conclusions.

It is worthwhile to point out that these equations do not

take into account either RF wave reflections from the dis-

continuities or coupling between the forward and the back-

ward waves. Although previous authors have demonstrated

that these issues can significantly impact TWT perform-

ance,9,14 we have left them out of our model in order to

limit its complexity. The addition of these physics is left for

future work.

Next, the initial conditions for Eq. (4) are defined at the

input of the device, z¼ 0, which corresponds to the phase

length, x¼ 0. From Eq. (3), f(x) is proportional to the ac

beam current, s, which is assumed to be zero at x¼ 0. The

parameter f 0ðxÞ ¼ df ðxÞ=dx, which is proportional to the ac

velocity of the electron beam element (assuming a time-

harmonic solution), is also assumed to be zero at x¼ 0.

Finally, using Eqs. (1) and (3), it can be shown that

f 00ðxÞþ C2ð4QCÞf ðxÞ is proportional to the normalized axial

RF electric field, a, where f 00ðxÞ ¼ d2f ðxÞ=dx2. Since the

magnitude of the electric field at the input of the TWT is an

arbitrary value and since f(0)¼ 0, we set f 00ð0Þ ¼ 1. In sum-

mary, at the TWT input, x¼ 0, the initial conditions of the

differential equation are given as

f ð0Þ ¼ 0;
f 0ð0Þ ¼ 0;
f 00ð0Þ ¼ 1:

(5)

Finally, the power gain of the backward-wave mode is

defined as
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GainBW ¼
f 00ð0Þ þ C2ð4QCÞf ð0Þ
f 00ðxÞ þ C2ð4QCÞf ðxÞ

����
����
2

¼ 1

f 00ðxÞ þ C2ð4QCÞf ðxÞ

����
����
2

: (6)

For constant and uniform b, C, d, and 4QC, Eq. (4) can

be reduced to the determinantal equation given by the con-

ventional Pierce model4 if a spatial harmonic solution is

assumed. That is, if a and s are assumed to vary as ejbz, Eq.

(4) can be reduced to

n2 � 1

ðn� b� jdÞ � 4QC ¼ 0; (7)

where the RF wavenumber in the presence of the electron

beam is assumed to differ from the electron beam’s wave-

number by a small amount, n (i.e., b ¼ be þ beCn where

jCnj � 1). Equation (7) is identical to Pierce’s determinantal

equation although Pierce used jd instead of n.

III. RESULTS

Equation (4) was solved subject to the boundary condi-

tions defined in Eq. (5) while the Pierce parameters b, C, and

d were simultaneously allowed to independently vary ran-

domly along the phase length, x, of the simulated TWT. We

did not explore the direct effect of independent random var-

iations of the space charge parameter, 4QC, however. This

was neglected since random fabrication errors are expected

to induce only a small, neglectable variation of the space

charge parameter.

Similar to previous publications,7,8 the Pierce parameters

were assumed to be piece-wise linear functions along the

length of the TWT. For this series of simulations, we defined

the randomly varied Pierce parameters at x¼ 1, 2, 3,… which,

according to Eq. (3), correspond to fabrication errors with a

correlation length of 1=be.

The value of the Pierce parameters at each of these

“nodes” along the TWT’s length was assumed to be an inde-

pendent Gaussian random variable with a specified mean and

standard deviation. An example of the piece-wise linear func-

tion is shown in Fig. 1. We denote the mean value as l and

the standard deviation as r. For example, we specify the ve-

locity parameter as b ¼ b0 þ b1 where b0 ¼ lb is the mean

value and b1 is a Gaussian random number defined by the

standard deviation, rb. Only one Pierce parameter was

allowed to vary during a given simulation. It is acknowledged

that random fabrication errors would likely affect all the

Pierce parameters simultaneously but, by simulating the

effects independently, it is easier to identify which type of

error has the greatest potential impact on TWT performance.7

For each specific standard deviation, the calculation of

Eq. (4) was repeated 1000 times. The Pierce parameters were

independently randomized along the length of the TWT for

each trial giving a different piece-wise linear function for

each. The results did not significantly differ when 500 or 2000

trials were simulated.

For each trial, the gain was calculated at each phase

length, x, according to Eq. (6). Over the ensemble of trials,

the mean and standard deviation of the gain at each x phase

length were calculated. The maximum mean gain, and its

corresponding standard deviation and length were then

determined and stored. An example of the calculated mean

normalized power (inversely related to the gain) is given in

Fig. 2(a) in which the corresponding maximum gain occurs

near x¼ 60.

The calculation of gain was repeated over a band of b0

values. Assuming a constant electron beam voltage, varying

b0 equates to varying the phase velocity (and thereby syn-

chronism) of the RF wave. Since b0 is directly related to the

beam/RF synchronism, we calculated the full-width 1-dB

FIG. 1. Example of piece-wise linear function used to simulate the randomly

varied Pierce parameters. In this case, the mean was set to zero and the

standard deviation was set to 0.02.

FIG. 2. (a) Example of mean RF power, jf 00ðxÞ þ C2ð4QCÞf ðxÞj2, versus the

axial phase length, x, for various Pierce velocity parameter errors and (b)

corresponding backward-wave maximum mean gain as calculated by Eq.

(6). In this example, C¼ 0.035, d¼ 0, b0 ¼ 2, and the number of trials was

1000.
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bandwidth of the maximum mean gain with respect to b and

used it to estimate the effect of errors on instantaneous spec-

tral bandwidth of the backward-wave mode. Additionally,

simulating multiple b0 values allowed us to track the change

in the location of the maximum gain (with respect to b0)

when fabrication errors were introduced.

In order to maintain consistent results as b0 was varied,

the piece-wise linear function representing the Pierce param-

eters remained constant for all b0 values in a given trial. In

other words, although the Pierce parameters were randomly

varied along x for a given trial, they remained constant as b0

was varied. In doing this, the effects of fabrication errors are

assumed to be frequency independent for each series of

simulations.

It is important to note from Fig. 2(a) that, for the error-

free case (rb ¼ 0), the normalized backward-wave power
approaches zero near x¼ 130 (i.e., the output end of the

TWT) which corresponds to the backward-wave mode gain,

shown in 2(b), approaching infinity. This is expected since,

in the ideal error-free case, a TWT has an absolute instability

assuming it is made sufficiently long. The infinite gain could

not be captured numerically, however, since an absolute nu-

merical tolerance of 10�5 was applied to the differential

equation solver used to solve Eq. (4). Thus, the maximum

calculated gain is limited to approximately 50 dB.

A. Random variation of the RF phase velocity

Random fabrication errors in the construction of a TWT

can result in random variation of the RF phase velocity along

its length. Similar to previous work,7,8 we described these

errors using qðxÞ � ðvqðxÞ � vq0Þ=vq0, where vq0 is the unper-

turbed RF phase velocity of the backward-wave mode (i.e.,

the phase velocity of the backward-wave on the SWS with-

out fabrication errors present). The relationship between rq

and the standard deviation of the Pierce velocity parameter,

rb is given by rb ¼ ðrq=CÞð1þ Cb0Þ.
An example of the calculated error-free backward-wave

gain versus the axial length, x, and mean Pierce velocity pa-

rameter, b0, is given in Fig. 3. In this example, x¼ 0–180,

C¼ 0.019, 4QC¼ 1.85, d¼ 0, and rq ¼ 0 (i.e., there are no

velocity perturbations along the length of the TWT).

Figure 3 shows that there is a very specific x and b0 loca-

tion at which the maximum gain occurs when no errors are

present. This x-value corresponds to the so-called, “start

oscillation-length” for the TWT while the b-value is related

to the oscillation frequency via the dispersion diagram.

Although the backward wave gain is expected to approach

infinity at the exact oscillation length, this simulation is lim-

ited to numerically finite values, thus, the maximum gain is

approximately 50 dB near b0 ¼ 1:5 and x¼ 130.

Phase velocity errors were then introduced (rq ¼ 0:05)

and the gain recalculated. The calculation was repeated

1000 times, each time with a different random piece-wise

linear function for the phase velocity along x. The results

are given in Fig. 4. Each x, b0 point represents the mean

gain of the 1000 trials. Thus, the figure represents 3 600 000

individual simulations (1000 trials at each 180 x-positions

FIG. 3. Calculated error-free, backward-wave mode gain versus axial dis-

tance, x, and Pierce velocity parameter, b0. In this example, we used

C¼ 0.019, 4QC¼ 1.85, and d¼ 0. No fabrication errors were simulated

(rq ¼ rp ¼ rd ¼ 0Þ. The values specified in the boxes on the contour lines

represent the backward-wave mode gain on that line in dB.

FIG. 4. Calculated backward-wave mode gain averaged over 1000 trials

(each trial having a different random distribution of phase velocity errors)

versus axial distance, x, and Pierce velocity parameter, b0. In this example,

we used C¼ 0.019, 4QC¼ 1.85, d¼ 0, and a phase velocity error, rq ¼ 5%.

The values specified in the boxes on the contour lines represent the

backward-wave mode gain on that line in dB.

FIG. 5. Distribution of maximum calculated backward-wave mode gain at

x¼ 129 for C¼ 0.019, 4QC¼ 1.85, and d¼ 0. A 5% phase velocity error,

rq, was simulated. The calculated Gaussian mean, l, and standard deviation,

r, of the distribution are given in the upper right corner.
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and 20 b0-positions). The gain is significantly suppressed

from the error-free case and occurs over a wider band of b0

values (i.e., over a wider band of frequencies). The resultant

backward-wave mode gain has a maximum of approxi-

mately 16.5 dB near b0 ¼ 1:5 and x¼ 130.

Further examination of the distribution of the calculated

backward-wave gain over the 1000 simulated trials was com-

pleted by plotting the distribution of the maximum gain (with

respect to b0) at a fixed axial length, in this case, x¼ 129. The

distribution is shown in Fig. 5. The calculated mean and

standard deviation are 16.0 dB and 7.6 dB, respectively.

Although this distribution is not precisely Gaussian, Gaussian

statistics were used to approximately describe the mean and

standard deviation of the gain distributions since they are

widely understood and allowed for easy comparison with

previous publications.7,8 A better fit statistical distribution

may be interesting for subsequent studies but is beyond the

scope of this analysis.

Figures 6(a) and 6(b) show the absolute and relative var-

iation of the maximum mean backward-wave mode gain as a

function of the magnitude of phase velocity error at different

4QC values. These simulations were completed using

C¼ 0.019 and d¼ 0. Figure 7 shows the corresponding

standard deviation. Figure 8 shows the corresponding axial

TWT lengths at which the maximum mean backward-wave

mode gain occurs (the rq ¼ 0 points equal the start oscilla-

tion length for an ideal, error-free SWS).

Figure 9 gives the calculated full-width instantaneous 1-

dB bandwidth of the maximum mean gain in terms of b for

the same series of simulations. Since the bandwidth is calcu-

lated from the maximum mean gain, it is expected that the

error-free case has zero bandwidth regardless of the value of

4QC. This is because the error-free maximum mean gain

includes the absolute instability which has an idealized zero

bandwidth in addition to infinite gain.

B. Random variation of the interaction impedance

Random variations of the Pierce gain parameter, C, were

also examined. Since the cube of C is linearly proportional to

the interaction impedance of the circuit, this is equivalent to

testing the effect of random variations of the interaction im-

pedance. Again, similar to previous analysis,7,8 we describe

the random variation as C3ðxÞ ¼ C3
0½1þ pðxÞ� where C0 is the

FIG. 6. Variation of maximum mean backward-wave mode gain for

C¼ 0.019 and d¼ 0 at different 4QC values as a function of the magnitude

of random SWS phase velocity errors. The unnormalized results presented

in (a) are normalized to the rq ¼ 0:005 case for each 4QC value in (b). The

gain is expected to approach infinity at rq ¼ 0 but is numerically limited to

a finite number.

FIG. 7. Standard deviation of maximum mean backward-wave mode gain

for C¼ 0.019 and d¼ 0 at different 4QC values as a function of the magni-

tude of random SWS phase velocity errors.

FIG. 8. Variation of length at which the maximum mean gain occurs with

C¼ 0.019 and d¼ 0 at different 4QC values as a function of the magnitude

of random SWS phase velocity errors.

FIG. 9. Variation of 1-dB bandwidth of maximum mean gain in terms of b
for C¼ 0.019 and d¼ 0 at different 4QC values as a function of the magni-

tude of random SWS phase velocity errors.
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unperturbed Pierce gain parameter (i.e., the value of C that

corresponds to the SWS without fabrication errors present)

and p(x) is a normally distributed, spatially dependent random

number having a standard deviation of rp. The correlation

between rp and rC is given as rC ¼ C0rp=3.

During these simulations, the value of the space charge

parameter, 4QC, was self-consistently calculated as C was var-

ied since 4QC depends intrinsically on C. We assumed that

the electron beam parameters (i.e., voltage, current, and charge

density) remained constant for each simulation; therefore, the

change in 4QC is given as 4QCðxÞ¼½C2
0=C2ðxÞ�4QC0 where

4QC0 is the unperturbed space charge parameter.

Figures 10(a) and 10(b) show the absolute and relative

variation of the maximum mean backward-wave mode gain

as a function of the magnitude of Pierce gain parameter error

at different 4QC values. These simulations were completed

using C0 ¼ 0:019 and d¼ 0. Figure 11 shows the correspond-

ing standard deviation. Figure 12 shows the corresponding

axial TWT lengths at which the maximum mean backward-

wave mode gain occurs. Figure 13 gives the calculated full-

width instantaneous 1-dB bandwidth of the maximum mean

gain in terms of b for the same series of simulations.

C. Random variation of the RF loss

Finally, we consider random variation of the Pierce loss

parameter, d, along the length of a TWT. For this analysis,

dðxÞ ¼ d0 þ d1 where d0 is the unperturbed Pierce loss pa-

rameter and d1 is a Gaussian random number defined by the

standard deviation, rd . Since only positive values of d repre-

sent RF loss in the simulation, it was necessary to set d0

¼ 0:5 and limit 3rd < 0:5.

Figures 14(a) and 14(b) show the absolute and relative

variation of the maximum mean backward-wave mode gain

as a function of the magnitude of Pierce loss parameter error

at different 4QC values. These simulations were completed

using C¼ 0.019 and d0 ¼ 0:5. Figure 15 shows the corre-

sponding standard deviation. Figure 16 shows the corre-

sponding axial TWT lengths at which the maximum mean

backward-wave mode gain occurs. Figure 17 gives the calcu-

lated full-width instantaneous 1-dB bandwidth of the maxi-

mum mean gain with respect to b for the same series of

simulations.

FIG. 10. Variation of maximum mean backward-wave mode gain for

C0 ¼ 0:019 and d¼ 0 at different 4QC values as a function of the magni-

tude of random interaction impedance errors. The unnormalized results

presented in (a) are normalized to the rp ¼ 0:005 case for each 4QC value

in (b).

FIG. 11. Standard deviation of maximum mean backward-wave mode gain

for C0 ¼ 0:019 and d¼ 0 at different 4QC values as a function of the magni-

tude of random interaction impedance errors.

FIG. 12. Variation of length at which the maximum mean gain occurs with

C0 ¼ 0:019 and d¼ 0 at different 4QC values as a function of the magnitude

of random interaction impedance errors.

FIG. 13. Variation of 1-dB bandwidth of the maximum mean gain in terms

of b for C0 ¼ 0:019 and d¼ 0 at different 4QC values as a function of the

magnitude of random interaction impedance errors.
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IV. DISCUSSION

The data in Figs. 6, 10, and 14 show that the maximum

mean backward-wave gain is significantly affected by all

three types of errors tested. Phase velocity errors, however,

have the largest relative impact. For example, from the data

presented, a 10% phase velocity error (i.e., rq ¼ 0:1) results

in a backward-wave gain reduction of approximately 25 dB

while a 10% interaction impedance error (i.e., rp ¼ 0:1) or a

10% loss error (i.e., rd ¼ 0:1) results in a gain reduction of

only about 13 dB.

Surprisingly, from the same set of figures, it is observed

that the magnitude of the space charge parameter, 4QC, did

not significantly affect the outcome of the backward-wave

analysis. The only appreciable impact occurred during the

random variation of RF loss as shown in Fig. 14. In that

case, increasing 4QC lowered the overall maximum mean

backward-wave gain.

The limited impact of 4QC on the backward-wave gain

can be explained by noting that the data presented in Figs. 6,

10, and 14 represent the maximum mean gain regardless of

the axial length required to reach that gain. As shown in

Figs. 8, 12, and 16, increasing the 4QC value results in an

increased axial length at which the maximum mean gain

occurs. By plotting the data this way, however, we can

examine the worst-case, maximum backward-wave gain pos-

sible and how it is affected by the introduction of fabrication

errors.

In Fig. 8, we observe that the introduction of phase ve-

locity errors had an inconsistent effect on the maximum

mean gain length (i.e., the axial length corresponding to the

location where the maximum mean gain occurs). However,

the effect was relatively modest and the results depended on

the value of 4QC used in the simulation. Further study could

be completed on this topic by reducing the numerical grid

size in x and repeating the analysis in order to better establish

how the maximum mean gain length is affected by random

phase velocity errors. Random variations of the interaction

impedance and the loss had no discernible effect on the max-

imum mean gain length as shown in Figs. 12 and 16.

As shown in Figs. 7, 11, and 15, the standard deviation

of the maximum mean gain for all three types of errors was

similar in that all three start at zero for r ¼ 0 and approach

approximately 7 dB as the standard deviation of the error

type was increased. Subsequent inspection of the corre-

sponding statistical distributions of the gain at various mag-

nitudes of r verified these results. Further study is required

FIG. 14. Variation of maximum mean backward-wave mode gain for

C¼ 0.019 and d0 ¼ 0:5 at different 4QC values as a function of the magni-

tude of random RF loss errors. The unnormalized results presented in (a) are

normalized to the rd ¼ 0:0025 case for each 4QC value in (b).

FIG. 15. Standard deviation of maximum mean backward-wave mode gain

for C¼ 0.019 and d0 ¼ 0:5 at different 4QC values as a function of the mag-

nitude of random RF loss errors.

FIG. 16. Variation of length at which the maximum mean gain occurs with

C¼ 0.019 and d0 ¼ 0:5 at different 4QC values as a function of the magni-

tude of random RF loss errors.

FIG. 17. Variation of 1-dB bandwidth of the maximum mean gain in terms

of b for C¼ 0.019 and d0 ¼ 0:5 at different 4QC values as a function of the

magnitude of random RF loss errors.
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to understand why the standard deviation of the gain behaves

in this manner.

Finally, we observe from Figs. 9, 13, and 17 that the 1-

dB bandwidth of the maximum mean backward-wave gain is

approximately linearly related to the standard deviation of

each type of error. When considered in combination with the

results shown in Figs. 6, 10, and 14, we observe that regard-

less of the error type, increases in the error’s standard devia-

tion result in a decreased maximum mean gain value and

increased 1-dB bandwidth. Of the three types of errors, phase

velocity errors have the most significant impact on the

bandwidth.

A. Comparison of backward-wave and fundamental
forward-wave mode results

It is of interest to compare the effect of fabrication

errors on the maximum mean fundamental forward-wave

and backward-wave mode gains while simultaneously look-

ing at the impact on the fundamental forward-wave mode

1-dB bandwidth. We seek to explore whether random or

quasi-random errors could be deliberately introduced into a

SWS design in such a way that the backward-wave gain

could be significantly reduced without significant reduction

to either the fundamental forward-wave mode gain or

bandwidth.

For this comparison, we used both the analysis derived

here (for the backward-wave gain) and from previous work8

(for the fundamental forward-wave gain and bandwidth). For

consistency, the length of both the fundamental forward-

wave and backward-wave models was set to the maximum

mean gain length for the backward-wave for the particular

set of Pierce parameters tested.

The value of the Pierce parameters was based on a pre-

viously developed 45 GHz ring-bar SWS design15 whose ba-

sic design parameters are given in Table I. Namely, for the

fundamental forward-wave mode C¼ 0.028 and for the

backward-wave mode C¼ 0.019. The value of the funda-

mental forward-wave mode C corresponds well with previ-

ously published mm-wave SWS design efforts.16 In general,

it is unlikely that the value of C will be identical for the fun-

damental forward-wave and backward-wave modes since the

interaction impedances will likely differ. Although it is diffi-

cult to generalize these results to all possible TWT designs,

it is generally the case for well-designed TWTs that the

backward-wave interaction impedance is significantly less

than the fundamental forward-wave mode.

The 4QC parameter was set to 0.9 and 1.85 for the fun-

damental forward-wave and backward-wave modes, respec-

tively. Again, these values were based on the ring-bar SWS

design and correspond well with previously published design

values.16

The TWT was assumed lossless (i.e., d¼ 0 for both

modes) except when d was allowed to randomly vary along

the length of the SWS. As discussed earlier, in that case, d0,

was set to 0.5 to ensure that d remained a positive value.

The comparison of the maximum mean fundamental

forward-wave and backward-wave mode gains and the

impact on the fundamental forward-wave mode’s maximum

mean gain 1-dB bandwidth are shown in Fig. 18. In each

case, it is observed that the backward-wave mode gain drops

much more rapidly than does the forward-wave gain as ran-

dom error is introduced. This is in part because the maxi-

mum mean backward-wave gain is ideally infinite in the

error-free case. In other words, when errors are not present,

the TWT is susceptible to an absolute instability for interac-

tion lengths greater than that required for start oscillation. As

TABLE I. Design parameters for the 45 GHz ring-bar SWS.

Beam voltage (V) 14 350

Beam current density ðA=cm2Þ 62.5

Gain per stage (dB) �20-30

RF efficiency (%) �10

Center frequency 45 GHz

FIG. 18. Comparison of maximum mean fundamental forward- and

backward-wave mode gains and change in fundamental forward-wave 1-dB

bandwidth of the maximum mean gain with introduction of random errors

along the length of a simulated TWT. Phase velocity errors were introduced in

(a), interaction impedance errors in (b), and loss errors in (c). The mean values

for the Pierce parameters were set based on the ring-bar SWS design in which

ðC0Þfund: ¼ 0:028; ðC0Þback: ¼ 0:019; 4QCfund: ¼ 0:9, and 4QCback: ¼ 1:85.

The mean value of loss was set to dfund: ¼ dback: ¼ 0 for (a) and (b) and set to

ðd0Þfund: ¼ ðd0Þback: ¼ 0:5 for (c). The data were normalized to the results for

rq ¼ 0:005 for (a), rp ¼ 0:005 for (b), and rd ¼ 0:0025 for (c).
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errors are added, this absolute instability is lost and the maxi-

mum mean gain of the backward-wave mode drops rapidly

from infinity.

The largest decrease of the backward wave gain occurred

when random phase velocity errors were introduced. In this

example, a 5% random phase velocity error reduced the maxi-

mum backward-wave gain by approximately 19 dB while

only decreasing the fundamental forward-wave mode gain by

0.6 dB and reducing the fundamental forward-wave’s maxi-

mum mean gain 1-dB bandwidth by 0.7%. This is a signifi-

cant result since it is reasonable that a 5% phase velocity

variation could be realized in a SWS design. If one deliber-

ately designed a 5% phase velocity variation into a nominal

SWS in a TWT, the gain of the backward-wave mode could

be reduced without significant impact on the fundamental

forward-wave mode gain or bandwidth. This ultimately would

produce a TWT that is more stable against unwanted oscilla-

tions without significantly affecting fundamental forward-

wave mode performance.

For the example displayed in Table I, the phase veloc-

ity error is of order 1%; detailed dimensional measurements

and statistical analysis on this TWT have been previously

presented.15 Note that with rq ¼ 0:01 and C¼ 0.028 (i.e.,

the nominal value used for the fundamental forward-wave

mode in this paper), then rb ¼ rq=C ¼ 0:01=0:028 ¼ 0:357,

which is within the range displayed in Fig. 8 of Chernin

et al.9

It should be reiterated that the current model does not

include the effects of multiple internal RF reflections from the

discontinuities. When internal reflections are included,

Chernin et al. have previously demonstrated that random vari-

ation of a SWS pitch can have significant impact on TWT per-

formance by introducing small-signal gain ripple.9 Therefore,

it is likely that a TWT designer that deliberately introduces

phase velocity errors would be faced with a trade-off between

backward-wave oscillation suppression and the magnitude of

small-signal gain ripple. Analyzing this trade-off is of interest

for future study.

We also see from Figs. 18(b) and 18(c) that random

interaction impedance and loss errors can also impact TWT

performance. In this example, a 5% random interaction im-

pedance error resulted in a reduction of the backward-wave

gain of approximately 10 dB while a 5% random loss error

resulted in a backward-wave gain reduction of approxi-

mately 12 dB. Neither had appreciable effects on the funda-

mental forward-wave mean gain or 1-dB bandwidth.

From these results, we conclude that random or quasi-

random variations of the circuit parameters (i.e., phase veloc-

ity, interaction impedance, and/or loss) along the length of the

TWT have the potential to significantly reduce unwanted

backward-wave gain while only having a minor effect on fun-

damental forward-wave mode performance. Although beyond

the scope of the present work, it would be of interest to

explore how to best utilize these results in a TWT and investi-

gate how to best realize deliberate circuit parameter variations

in the fabrication of a SWS.

V. CONCLUSION

We have developed a model to look at the impact of ran-

dom fabrication errors (encoded as random variations of the

Pierce parameters along the length of a simulated TWT) on

the backward-wave mode. Phase velocity errors were shown

to reduce the backward-wave gain most significantly

although both interaction impedance and loss errors also had

significant impacts. The magnitude of the space charge

forces, 4QC, did not appear to have a substantial impact on

the calculated maximum mean backward-wave gain but did

affect the axial length at which the maximum gain occurs

(i.e., the oscillation length). For example, increasing the

4QC value resulted in a longer start oscillation length. The

1-dB bandwidth (with respect to b) of the backward-wave

mode’s maximum mean gain was found to be linearly related

to the standard deviation of the Pierce parameter errors and,

again, phase velocity errors had the largest effect.

In comparing the effect of random fabrication errors on

the fundamental forward-wave and backward-wave mode

gains and bandwidths, we identified that a 5% random varia-

tion of the circuit parameters (i.e., phase velocity, interaction

impedance, or loss) along the length of a SWS can signifi-

cantly reduce backward-wave gain while having only a

minor effect on fundamental forward-wave mode gain and

bandwidth. This is a significant result that could be utilized

to produce TWTs that are more stable against unwanted

oscillations while having essentially the same fundamental

forward-wave mode performance.
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