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ABSTRACT

We consider the limiting current from an emitting patch whose size is much smaller than the anode-cathode spacing. The limiting current is
formulated in terms of an integral equation. It is solved iteratively, first to numerically recover the classical one-dimensional Child-Langmuir
law, including Jaffe’s extension to a constant, nonzero electron emission velocity. We extend to two-dimensions in which electron emission is
restricted to an infinitely long stripe with infinitesimally narrow stripe width so that the emitted electrons form an electron sheet. We next
extend to three-dimensions in which electron emission is restricted to a square tile (or a circular patch) with an infinitesimally small tile size
(or patch radius) so that the emitted electrons form a needlelike line charge. Surprisingly, for the electron needle problem, we only find the
null solution for the total line charge current, regardless of the assumed initial electron velocity. For the electron sheet problem, we also find
only the null solution for the total sheet current if the electron emission velocity is assumed to be zero, and the total maximum sheet current
becomes a finite, nonzero value if the electron emission velocity is assumed to be nonzero. These seemingly paradoxical results are shown to
be consistent with the earlier works of the Child-Langmuir law of higher dimensions. They are also consistent with, or perhaps even antici-
pated by, the more recent theories and simulations on thermionic cathodes that used realistic work function distributions to account for
patchy, non-uniform electron emission. The mathematical subtleties are discussed.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0169276

I. INTRODUCTION

Non-uniform electron emission from a cathode surface is notori-

roughness. Strong electron emission from a localized spot, whose size
is small compared with the anode-cathode (AK) gap spacing d, is also
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ously difficult to characterize." One key question, which remains unan-
swered, is the maximum allowed average current density and its
relation to the classical Child-Langmuir law (CLL),”” which gives the
maximum uniform steady state current density that can be trans-
ported across a planar diode of gap voltage V and gap separation d

[Fig. 1(a)],
4\/5 e V32
Joo = 5 60\/;—d2 , (1.1)

where e and m are, respectively, the electron charge and mass and ¢ is
the free space permittivity. Equation (1.1) is a constraint imposed by
the Poisson equation and the continuity equation in a one-
dimensional (1D), planar, nonrelativistic diode. It is independent of
the cathode’s material properties. However, emission from a cathode
is generally non-uniform and is highly dependent on the cathode tem-
perature, material properties, emission processes, and surface

a common occurrence, though rarely understood, or analyzed, in its
relation to the CLL. This paper examines this issue.

The literature on non-uniform cathode emission is exten-
sive."" "’ Extending the classical 1D CLL to 2D in order to understand
some aspects of non-uniform emission, Luginsland et al.” performed
particle-in-cell simulations in which a uniform emission current den-
sity was assumed to occur over a finite stripe of width W in a planar
gap of separation d [Fig. 1(b)]. They arrived at the following 2D scaling
law, synthesized from their simulation data,

J(2) d

—~14+—, 0<d/W<I0. 1.2

Je W / (42
Lau’ later analytically derived the scaling law (1.2) under the assump-
tion d/W < 1. They found that this scaling law fit the numerical data
to within a few percent and that it is virtually independent of an exter-
nal magnetic field (ranging from 0 to 100 T) imposed longitudinally
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FIG. 1. (a) A planar diode of gap spacing d and gap voltage V. (b) Emitting stripe of
width W on the cathode (z=0). (c) Square emitting tile of size s on the cathode.
This paper considers the limits W — 0 and s — 0, corresponding to an electron
sheet and a line charge, respectively.

along the electron flow direction. Assuming uniform emission of elec-
trons over a circular patch of radius R with d/R < 1, a similar 2D
scaling law was derived,’

J(2) d

, 0<d/R<2, 1.3
JeL 4R / (13)

which also fit the numerical data to within a few percent.

Unmstattd and Luginsland'’ considered a similar 2D problem but
allowed the entire emitting strip to satisfy the space-charge-limited
condition, i.e., the electric field on the cathode surface equals zero
everywhere on the emitting stripe [Fig. 1(b)]. Their simulation study
revealed several important features.

(a) The emitted current density profile exhibits a wing-like struc-
ture at the edges of the emitting stripe where the local current
density is significantly higher than the 1D CL value, Eq. (1.1),
due to the lack of space charge in the region adjoining the
emitting stripe.

(b)  The significant increase in the edge current may compensate
for the non-emitting regions to the extent that if only 20% of
the cathode surface is actively emitting (with the remaining
80% of the cathode surface non-emitting) the cathode may
still deliver 80% of the 1D CL current, as if the entire cathode
were emitting.

(¢)  The edge effect in (b) is most pronounced for emitting stripes
with narrower width.

(d) The emitted current density’s wing-like structure is indepen-
dent of the longitudinal applied magnetic field, similar to the
conclusions of Luginsland et al.® Thus, in an analytic theory,
for simplicity, an infinite longitudinal magnetic field may be

ARTICLE pubs.aip.org/aip/pop

assumed to restrict electron motion to one direction, and this
paper will adopt this simplifying assumption.

Chernin et al."” and Jassem et al."* used both a semi-analytical
method and the MICHELLE particle-in-cell code™ to study non-
uniform emission from a thermionic cathode that underwent a transi-
tion from the temperature-limited regime to the space-charge-limited
regime as the cathode surface temperature was raised. They considered
emission patches in the form of stripes [1D, Fig. 1(b)] and of square
tiles [2D, Fig. 1(c)], respectively. They modeled realistic levels of emis-
sion non-uniformity through 1D'* and 2D'* variations of the work
functions on the cathode surface, where the work function distribu-
tions were obtained from electron backscatter diffraction measure-
ments on a tungsten dispenser cathode.”’ They found excellent
agreement between the semi-analytical formulation and the
MICHELLE code results for all electron flow regimes: temperature-
limited, space-charge-limited, and the transition between them, even
when the aspect ratio such as d/W is of order 10%, which was far
beyond the range of Eq. (1.2) and of the simulations by Umstattd
et al."’ and Luginsland et al.® Their study revealed the following addi-
tional features. '

(e) The emitting patches do not emit independently. The anode
current predominantly originates from the regions of the low-
est work function, even though such regions constitute of
only 18% of the total cathode area, as in the experimental
data that they used.

(f) For a fixed work function distribution, as the emitting patch
size shrinks, the contributions from the lowest work function
regions become even more dominant at high temperatures,
because the edge effect is roughly measured by the ratio of the
circumference to the area of an emission patch, and this ratio
increases as the patch size decreases.

It is, therefore, of substantial interest to establish scaling laws
both in 2D and 3D for emission patches with very small emission size.
This paper considers this problem, since the analytic scaling laws, (1.2)
and (1.3), are not valid when the emission patch size, W or R, is very
small compared with the gap separation d. In addition, edge emission
from small patches is an important contributor to the anode current
[cf. point (f)]. Thus, for 2D, we consider an isolated emission stripe in
a planar cathode with a vanishingly small stripe width W' [Fig. 1(b)],
so that the emission current forms an electron sheet whose density
profile is a delta function in x. For 3D, we consider an isolated emis-
sion square tile, as shown in Fig. 1(c), (or emission circular patch)
with a vanishingly small tile size s (or patch radius R) so that the emis-
sion current forms a line charge whose density profile is a delta func-
tion both in x and in y. Since lateral motion of the electrons has been
shown to be unimportant,"”'* we shall assume an infinite longitudinal
magnetic field so that electron motion is confined to the z-direction
[see also point (d) above].

The assumption of an emission current density profile in the
form of a delta function, in both a 2D and 3D geometry [Figs. 1(b)
and 1(c)], conveniently bypasses the vexing question concerning
whether, and where, the electron emission is space-charge-limited in
an extremely small emission patch. It also bypasses the geometrical
question of whether this very small emission patch is a square tile or
circular in shape. By solving the Poisson equation for delta-function
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emission current density profiles, our results are independent of the
cathode surface properties. We shall, however, compare this new the-
ory with some key results of our previous work on non-uniform emis-
sion, as summarized above.

For the sheet and line current problems, we have formulated the
limiting current in terms of an integral equation. We have solved this
equation iteratively, in the manner given in Sec. II. The numerical
results are presented in Sec. I11. To validate this approach, since limit-
ing current in a diode has not been previously formulated in terms of
an integral equation to our knowledge, we first present in Subsec. I1I A
the numerical results for the classical 1D CLL using this integral equa-
tion approach. We also include Jaffe’s extension to a constant, nonzero
initial velocity of the emitted electrons.”” In Subsec. 111 B, the results for
the 2D limiting current of an electron sheet are presented. We show
that a solution exists if and only if we assume the sheet electrons are
emitted with a non-zero initial velocity. The solution turns out to be in
qualitative agreement with Chernin’s 2D study of thermionic cathodes"”
(as will be shown in Sec. IV). Subsection III C considers the limiting cur-
rent for an electron line charge. In this case, we show that there is no
non-trivial solution regardless of the emission velocity of the electrons.
An interpretation of this null result is given. In Sec. IV, we will further
show that this null result may actually be anticipated from the data of
Jassem’s 3D study of thermionic cathodes;'* we also show how point (f)
above is reconciled with this null result. Section V concludes this study.
The main results are given in the main text; the detailed derivations, the
mathematical proof of nonexistence of solution, and the discussions of
some mathematical subtleties, are given in the Appendixes.

Il. FORMULATION

We consider a planar diode with gap separation d and gap volt-
age V [Fig. 1(a)]. An infinite magnetic field in the z-direction is
assumed so that all electron motions are restricted to the z-direction.
The charge density, —p(x,y,2), and the electrostatic potential
¢(x,y, z) satisfy the Poisson equation (p > 0),

p(x..2)

Vi(x,y,2) = o 2.1)
with the boundary conditions
O(x,y,0) =0, o(x,y,d)=V. (2.2)
We write ¢(x, y,z) as
b(x,y,2) = Vz/d + {(x,y,2), (2.3)

which is a superposition of the vacuum potential, Vz/d, and the
space charge potential, Y (x,y,z), that satisfies the Poisson
equation,

p(*.7:2)

€0

Vz‘//(xd’: Z) = (2.4)

with the grounded boundary conditions atz = 0 and z = d,

l//(xvy7 O) = 07 lp(x7y7 d) =0. (25)

For the classical 1D Child-Langmuir problem, the magnitude of
the charge density, p(x, y, z), depends only on z, and the space charge
may be considered as a superposition of electron sheets within the gap
[Fig. 2(a)]. The potential y(x,y,z) due to a typical electron sheet,

pubs.aip.org/aip/pop

¢=0

z=d
/electron sheet
A
Z 2
$=0
z=0 >
(a)
¢ =0
z=d lectron li
electron line
___________ o charge or
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$=0
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(b)

FIG. 2. (a) An electron sheet and (b) a line charge or a point charge between two
grounded plates. The Green's function of the space charge potential at
(x,y,2) =(0,0,2) is constructed to calculate the limiting current in 1D using (a) in
Subsec. Il A, and in 2D and 3D using (b) in Subsecs. Il B and Il C, respectively.

located at z = z, [Fig. 2(a)], may readily be obtained; it is simply the
Green’s function, G(z, z.), for Egs. (2.4) and (2.5), derived in Sec. IIL.
It is important to note that G(0,z.) = G(d, z:) = 0, since the homo-
geneous boundary condition (2.5) is satisfied. Superposition of this
Green’s function yields the space charge field due to p(z) = p(0,0, z)
for the classical 1D Child-Langmuir problem. We further assume that
all electrons are emitted from the cathode with the same velocity in
the z-direction with energy, E;,. The electron velocity v(z) at a posi-
tion z is given by mv? /2 = E;, + e(z), yielding
J 1/2

p(2) =0 =112/ m)(En + ed ()], (26)
where ¢(z) = ¢(0,0,z) and J (> 0) is the current density along the z-
axis, (x,y)=1(0,0). Note that J is a constant, independent of z.
Evaluating Eq. (2.3) at (x,y) = (0,0), and noting the remarks following
Eq. (2.5), we arrive at the integral equation for ¢(z) in an alternate
derivation of the classical 1D Child-Langmuir law,

at[a !
$(z) = Vz/ *L 1/ m) (B + eb(z0)))

The CLL limiting current density, in this formulation, is the value of
beyond which there is no solution to the integral equation (2.7), under
the assumption E;, = 0. Jaffe extends the CLL to E;, > 0.”

For the 2D problem, we assume that the emission region is a
stripe of a vanishingly small width, W [Fig. 1(b)]. We may similarly
construct the integral equation for ¢(z) = ¢(0,0,z). This electron
sheet may be considered as a superposition of line charges located at
(%) = (0,0). The Green’s function, G(z,z.) for Egs. (2.4) and (2.5),

G(z7 Zc). 2.7)
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due to a representative line charge located at z = z, of unit line charge
density [Fig. 2(b)], may be obtained from the image charge method.
Note that Egs. (2.1)-(2.7) still apply for this electron sheet problem.
The last statement, likewise, also applies for the 3D problem where
p(%,y,2) in Eq. (2.1) represents a line charge located at (x,y) = (0,0),
as shown in Fig. 1(c) in which the tile size s — 0.

Defining the dimensionless variables ¢ = ¢/V, z = z/d, z,
= z./d, the general integral equation (2.7) becomes

$(z)=z+1<f(_dgc)l/2@(z,zc), 0<z<1, (28)
0 (p(zc) + A
A =E;/eV, (2.9)

where A is the dimensionless parameter measuring the injection
energy of the mono-energetic electrons, and K(> 0) is the dimension-
less parameter proportional to the emission current (which is equal to
the anode current for the present model of a mono-energetic electron
stream). Note that the integral in Eq. (2.8) is always negative, as it rep-
resents the potential depression due to some unit electron charge
inside two grounded plates (Fig. 2). The limiting current is given by
the maximum value of K beyond which there is no solution to Eq.
(2.8). If K=0, Eq. (2.8) yields the vacuum field solution, 5(2) =7z, as
expected. For a small value of K, we expect that Eq. (2.8) may be solved
iteratively, starting with this vacuum solution. The approximate solu-
tion after the k-th iteration is then given by

. -
?")(z):ﬂKJ . )dzc 726 7),
— (k-1
" (3% V) +A)
k=1,2,3,....6"@z) =z (2.10)

At a specified value of A, we consider that the limiting current
(maximum value of K) is reached if after some k-step iterations,

$(k) (z) first becomes complex at any value of Z between (0,1). Since
Eq. (2.8) is real, this condition is equivalent to ¢(Z) + A < 0 after
some k-iterations at any value of Z between (0,1). Note further that we
implicitly equate non-convergence of the iterative algorithm of Eq.
(2.10) with nonexistence of a solution, but we have not proven it.
However, the fact that we are able to recover the classical CLL, includ-
ing Jaffe’s extension,”” give us some confidence in its validity. In Sec.
111, we present the limiting currents, thus obtained from this iterative
method in Subsecs. 11I A, 111 B, and IIIC, respectively, for the three
cases: the classical 1D CLL, electron emission in the form of a thin
sheet, and electron emission in the form of a thin line.

lll. THE ITERATIVE SOLUTIONS

This section outlines the iterative solutions for the three cases
listed in the last sentence of Sec. II. The details are given in the
Appendixes.

A. The classical 1D Child-Langmuir law

In this case, p(x.y,2) = p(z) in Eqgs. (2.1) and (2.4). The Green’s
function G(z, z.) for Egs. (2.4) and (2.5) is the electrostatic potential
due to a representative electron sheet charge, located at z = z. of unit
surface charge density [Fig. 2(a)]. It satisfies

pubs.aip.org/aip/pop

@Gz z) 1 G0

TR o) :
where & denotes the Dirac delta function and G(0, z.) = G(d, z.) = 0.
We have denoted (0, 0, z) = G(z, z.) here and henceforth in Sec. I11.
The solution to Eq. (3.1) is readily shown to be

_@’ z<z,

€0

G(z,z.) = 3.2

= L(z —d) z>z >
EOd b) (o8]

which is plotted in Fig. 3. Equation (2.7) then reads
d
¢(z) = Vz/d +J [p(zc) dz| G(z, z)

0 ] |:Zc (;; d)}

=Vz/d Zd c
[t J [/ m) (B + e ()]

d ] _ (d - Zc)z
* L e [(Z/m)(Em + ed)(zc))}l/2 [ €d } '
0<z<d. (3.3)

Its normalized form, Eq. (2.8), becomes

Pz =z2+K {r L)I/z .z —1)]

0 (pz) + A
! dz
+ | ————[-z(1 - 2.)] }, 0<z<1, (34
L ((,f)(fc) +A)1/2 z z Z
where
K =4 (3.5)
Jer

and J¢, is the 1D classical Child-Langmuir current density, Eq. (1.1).
We use the iterative scheme, Eq. (2.10), on Eq. (3.4). We consider
the limiting currgl{k)(maximum value of K;) is reached if after some k-
step iterations, ¢ (z) first becomes complex at any value of Z
between (0,1). For A =0, we have found agreement within 0.1%
between our numerical results for the maximum value of J with the
classical 1D CLL, Eq. (1.1). For nonzero A, the numerical scheme
(2.10) yields the maximum value J=J (1), which is shown in Fig. 4 for

G(z,2z:)

0

_ (d—z.)z
€od

FIG. 3. The Green's function G(z,z;) for the 1D geometry (the classical
Child-Langmuir law).
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4 Integral equation results
40— J(1)/Jer = [(1 + A)Y2 + AV (Jaffe)

25

FIG. 4. The 1D Child-Langmuir Law from solutions of the integral equation (3.4) for
A =0, 10’3, 2 (triangles, with numerical error less than 0.5%). The solid line
shows Jaffe’s formula for nonzero initial emission ener%y, A =Ej/eV > 0. The
numerical values of J(1)/Joo at A =0,10"",2 are, respectively,
1, 1.0995, 31.1448, according to Jaffe.

some test cases at very low and high values of A. Also shown in Fig. 4
is Jaffe’s analytic formula for nonzero A
1 3

1) _ (1+A)* ¢ Al/z} . (Jaffe) (3.6)

Jer
Figure 5 shows the potential profiles ¢ (Z) obtained from the itera-
tive scheme, for A = 0, and A = 2, at the maximum value of Kj.
These curves are indistinguishable from the analytic solution. Note
that in Fig. 5, ¢(z) does not reach the value —A at its minimum at
the limiting current, a well-known result for nonzero A even

—A=0
—A=2
0.5¢ 1
0 -
~
g
0.5 -
1F i
_1.5 1 1 L
0 0.25 0.5 0.75 1

z

FIG. 5. Potential profiles at the limiting current in 1D for A = 0 and A = 2, from
the numerical solution to the integral equation (3.4). These two curves are indistin-
guishable from the analytic theory.

pubs.aip.org/aip/pop

though we use ¢(Z) + A < 0 after some k-iterations at any value
of Z between (0,1) as the condition for nonexistence of solution.
Appendix A discusses the convergence of the iterative solution to
Eq. (3.4) and related numerical issues. The numerical results
shown in Figs. 4 and 5 gave us confidence in using the same itera-
tive scheme, (2.10), on the electron sheet and electron line charge
problems, at least for low values of K.

B. Maximum sheet current

In this case, p(x,y,2) = 0(z)d(x) in Eqgs. (2.1) and (2.4), where
a(z) > 0 is the magnitude of the surface charge density, in C/m?, for a
current sheet of vanishingly small thickness [Fig. 1(b)]. The Green’s
function to Egs. (2.4) and (2.5) is the electrostatic potential due to a
line charge of unit line charge density located at (x,z) = (0,2),
z. € (0, d) that satisfies [cf. Fig. 2(b)]

Vzll/(x,y7 z) = éé(z — 2.)0(x) (3.7)

and the homogeneous boundary condition, Eq. (2.5). The solution
Y (x,y,z) within the gap [Fig. 2(b)] may be readily obtained by
summing the electrostatic potential due to the infinite series of
image line charges located at z= (2nd +z.), n = *1,*2,...
From (0,0, z), which we denote as G(z,z.) as in Eq. (3.1), we
obtain

1 o0

|z — (2nd + zc)|
— |z + (2nd + zc)|

sin (g (—z + zf))

G(z, z) =

27ep 5

1
 27me In n '
0 sin (f (z+ EC))
2
0<2z2<d 0<z<d. (3.8)

Note that G(0,z.) = G(d, z.) = 0, since the homogeneous boundary
condition (2.5) is satisfied. The last equality in Eq. (3.8) may be estab-
lished using the identity,

1°—°[ m+a  sin(na)

= . 3.9
e m+b sin(7b) (39)
The normalized integral equation (2.8) then reads
T, _ . _
e [
Md:z+&J B a ,
0 ($(z.) + A) sin (5 z+ zc))

0<z<1, (3.10)
Ky = (2/97)(M,/d)/cr, (3.11)

where M, (>0, in A/m) is the current carried by the electron sheet per
unit length in y [Fig. 1(b)]. Note that M, = o(z)v(z) is a positive
constant.

As in Subsec. IIT A, we numerically solve Eq. (3.10) using the
iterative scheme (2.10). For the case of zero injection energy
(A =0), we only find the null solution for K, ie., there is no
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non-zero value of K,, no matter how small, for which Eq. (3.10)
has a solution for ¢(Z) when A =0. We obtain this surprising
result after considerable numerical effort, as outlined in Appendix
B. The mathematical proof is given in Appendix C. Appendix B
describes two numerical methods that we have used to validate
each other.

For nonzero A, the iterative scheme converges if K, is below a
critical value, which is plotted in Fig. 6. This figure shows that this
critical K, is numerically quite small. We argue in Sec. IV that
these values of K, are consistent with previous studies of 2D emis-
sion stripes on thermionic cathodes that used realistic work func-
tion distributions. Note that by finding non-zero solutions for
delta-function current density profiles, we have demonstrated that
it is possible in principle to exceed Jc;, locally by an arbitrary large
factor for nonzero emission velocity.

C. Maximum line current

In this case, p(x,y,2) = A(z)0(x)d(y) in Eqs. (2.1) and (2.4),
where A(z) > 0 is the magnitude of the line charge density, in C/m,
for an electron line charge of vanishingly small cross section [Fig.
1(c)]. The Green’s function to Egs. (2.4) and (2.5) is the electrostatic
potential due to a unit point charge located at (x,y,z)= (0,
0,2.), zc €(0,d) that satisfies [Fig. 2(b)]

szp(x,y,z) = ;5(2 — zc)é(x)é(y) (3.12)

0
and the homogeneous boundary condition, Eq. (2.5). The solution
¥ (x, y,z) within the gap [Fig. 2(b)] may also be obtained by summing
the electrostatic potential due to the infinite series of image point
charges located at z = (2nd + z.), n = =1, £2, .... From (0, 0, z),
in which we obtain

-1
10 T T T T T
4 Integral equation results

—TFit: Ky = 0.2336 x A052™

107 107 10

FIG. 6. The normalized 2D limiting current (K2) on an electron sheet as a function of
A according to the integral equation formulation (triangles). The solid line of best fit
(having both R-square and adjusted R-square values of 0.9999) is added for visual
convenience. The numerical values of K, at A =0, 107°, 107%,1073, and 102
are, respectively, 0, 6.5 x 107, 1.85 x 107%, 6.05 x 10~°, and 2.06 x 1072,
whose respective errors are 0,5 x 107°,5 x 107°,5 x 10~°, and 5.315 x 10°°.
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! Lo,
T 47 |z —z| |z+z]

- 1 1
+; |z+(2nd+zc)|7|z—(2nd+zc)|

i B 1

|z + 2nd—zc)‘ |z—(2nd —z)|| |
0<z<d, 0<z <d. (3.13)

The normalized integral equation (2.8) then reads

$(@)=2+K Jl _Ll/z H(z,z), 0<z<1, (3.14)
0 ($(z.) +A)
T3 — 1 1
(272(:) - - |E 7EC| + |—2 +EC|
00 1 1
+; [+ @n+z)] - (@2n+z.)
N 1
- Z:; Z+(@n-z)| [z-(2n- zc)|] » (315
= (L/d*)/(9n)cv). (3.16)

In Eq. (3.16), I (>0, in A) is the current carried by the electron line
charge [Fig. 1(c)]. Note that I; = A(z)v(z) is a positive constant.

It is easy to see that there is no solution to Eq. (3.14) for K3 # 0
because the singularity at Z. = Z in H (2, Z.) is so strong that the inte-
gral (3.14) always diverges for any z, 0 < z < 1. It then immediately
follows that only the null solution for the total line charge current
exists, regardless of the electrons’ emission velocity. This result might
have been anticipated from the mathematical idealization of a line
charge, on which the electrostatic potential approaches negative infin-
ity, logarithmically. This infinitely large negative potential barrier pre-
vents electron travel toward the anode regardless of the electron’s
initial velocity. We conjecture that it is a similar negative potential on
the cathode surface that causes the null solution for the electron sheet
problem in Subsec. III B when the injection energy is zero. In fact,
Appendix C shows that the nonexistence of a solution for the electron
sheet geometry (with A = 0) first appears at z= 0. On the other hand,
in Subsec. II1 A, such a potential barrier is absent in the 1D classical
Child-Langmuir problem even with A = 0. Mathematically, the
Green'’s function G(z, z.) is finite at z. = z in Subsec. I1I A, but is neg-
ative infinite in Subsecs. I1I B and I11 C.

Despite the zero current limit for a line current, we note that in a
realistic thermionic cathode with patchy emission on the cathode sur-
face, it is the tiny emitting patches that carry the greatest fraction of
anode current, as pointed out in item (f) in Sec. I. In Sec. IV, we
attempt to resolve this paradox by a comparison with previous analytic
theory and simulation, which use realistic work function distributions
to account for nonuniform electron emission on a cathode.

IV. COMPARISON WITH PREVIOUS THEORIES
ON PATCHY EMISSION

This section shows that the seemingly surprising results of
Subsecs. IIIB and IIIC are indeed consistent with Umstattd and
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Luginsland,“) Chernin et al,"” and Jassem et al."* Consider first elec-
tron emission from a single isolated patch of area A,. Let I, be the total
current reaching the anode from this isolated patch, and Jy,= I, /A, be
the anode current density resulting from this isolated emitting patch.
We may write, in general,

Ja =Jer +AJ, (4.1)

since it was established that the anode current density from a finite
patch may exceed the 1D Child-Langmuir value by AJ, as shown in
Egs. (1.2) and (1.3) for instance. Suppose that there are N such emit-
ting patches on this cathode and that the remaining area on this cath-
ode, designated as A,, is non-emitting. Then, the total current
reaching the anode is, assuming that each emitting patch remains
isolated,

1(2) = NA.(Ja + AJ). (4.2)

The total anode current according to the 1D CLL is, assuming that the
entire cathode is emitting,

I(l) = (NAe + An)]CL- (4-3)
For I(2) to approach I(1), the following condition needs to be satis-
fied, upon comparing Eqgs. (4.2) and (4.3),
Al A,
S ,
]CL NAe

(4.4)

since each emitting patch may no longer be isolated from its surround-
ings on a real cathode [cf. point (e) in Sec. I].

The inequality (4.4) has an interesting interpretation. Its right-
hand side (RHS) is simply the ratio of the non-emitting area to the
highly emitting area on the entire cathode. This ratio could be large,
~4 for example, if the non-emitting area is four times the actively
emitting area; i.e., only 20% of the cathode surface is actively emitting
and the remaining 80% is non-emitting. However, the anode current
may still approach Eq. (4.3) if each emitting patch produces a suffi-
ciently large AJ to compensate for the non-emitting regions. An emit-
ting patch whose size is much smaller than the AK spacing could
satisfy Eq. (4.4). This was indeed a major discovery by Umstattd and
Luginsland,' reenforced by Chernin et al."” and Jassem et al."* These
authors’ numerical calculations all show that a cathode with only
20%,"” or even 5% (Ref. 13) of tiny, actively emitting patches may
deliver up to 80% of the 1D CL current for the entire cathode.

We now compare the key unexpected results of the present paper
with some specific examples in previous studies of patchy emissions
on a thermionic cathode. In this comparison, the AK gap spacing was
fixed at d = 381 um, and the gap voltage was V = 179.5 V. For these
parameters, Jc; = 4.2 A/cm? (including the small correction due to
the finite cathode temperature™”). Chernin et al.'’ considered a two-
stripe model in a 2D theory, one stripe is emitting with a work func-
tion of 2.1eV, and the neighboring stripe is non-emitting. The total
width (in y, in Chernin’s notation here) of both stripes is fixed at
p = 20 um, and the work function distribution is periodic in y with
period p. Within each period, the width (W) of the emitting stripe
ranges from 5% to 100% of the full period p. At a cathode temperature
T =1400°C, both Chernin’s semi-analytic theory and the
MICHELLE code yield I(2) to be within 90% of I(1) for all W > 0.1p
= 2 pim. (See Fig. 10 of Chernin."”) Thus, a 2 um width of an emitting

ARTICLE pubs.aip.org/aip/pop

stripe is very small compared with d = 381 um, to a large extent such
an emission stripe might be modeled as a delta-function distribution,
as done in Subsec. I1I B. To within 10% accuracy, for W > 2 um, we
then obtain, for this example,
J2) _p
o W 0.1p < W < p. (4.5)
For an emission stripe of width W, the sheet current density is
M, =W x J(2) = pJcr, yielding the normalized sheet current
parameter [cf. Eq. (3.11)]
K, = % x % = %% = 0.00371. (4.6)
Note that a cathode temperature of 1400 °C (~0.14 eV) roughly corre-
sponds to the initial emission velocity parameter A = 0.14V/179.5V
=0.000 78, which is between the range of A = 0.0001 and A = 0.001
(Fig. 6). Note further that Eq. (4.6) gives a value of K, between
0.001 85 and 0.006 05, the latter two numbers being the critical values
of K, corresponding to A = 0.0001 and A = 0.001, respectively (cf.
Fig. 6). Thus, our unexpected, new result on current sheet as given in
Subsec. 111 B is in fact consistent with previous studies of 2D emitting
stripes on thermionic cathodes that used realistic work function
distributions.
Let us now turn to the 3D extension of non-uniform emission on
a thermionic cathode with the same d = 381 yum and V = 179.5V as
in the preceding paragraph, also used by Jassem et al.'* In one example
that is most relevant to the study of a line charge given in Subsec. 111 C,
Jassem considers a work function distribution that is periodic both in
x and in y on the cathode surface, with equal period p. The simulated
cathode surface, of area p x p, is subdivided into 256 square tiles, each
tile having an edge of length s [Fig. 1(c)] so that p = 16s. The results
for s = 0.3125, 2.5, 5, and 10 um are shown in Fig. 5 of Jassem.'* At
a sufficiently high cathode temperature, such as 1200 °C, this figure
shows that the anode current for all values of s is within three percent
of the 1D Child-Langmuir value, as if the entire cathode were emit-
ting. Note that this anode current predominantly comes from the 46
tiles of the lowest work function [1.61 €V, see Fig. 4(e) of Jassem'’],
which constitute of only 46/256 =17.97% of the cathode area (see
Table I of Jassem). Thus, analogous to Eq. (4.5), these numerical
results suggest, for this example,

JB3) 7P

o 46xs2

(4.7)

Equation (4.7) implies that the total anode current due to each square
tile of size s is approximately I, = s*J(3) = 5.57s%J¢;, which tends to
zero as s — 0. This example is, therefore, also consistent with the sur-
prising result of Subsec. 111 C, namely, a line charge with a vanishingly
small cross section carries a vanishingly small amount of current. Yet, it
is these very small emitting patches that carry the bulk of the anode
current, as if the entire cathode surface were emitting, as shown in Fig.
5 of Jassem, and summarized in point (f) in Sec. I. Equation (4.7) offers
a resolution to this paradox.

V. CONCLUDING REMARKS

This paper considers the maximum anode current from an iso-
lated emitting patch with a vanishingly small area, using a new integral
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equation approach. This idealization bypasses the difficult question
concerning the surface electric field distribution on a small emitting
patch of finite size. We assume a constant initial velocity for the emitted
electrons so that all electrons are moving with a single forward velocity
anywhere within the diode. This situation is markedly different from the
more realistic model of thermal emission,”'*'*** where a large fraction
of emitted electrons may be reflected by the virtual cathode, and only a
small fraction of the energetic electrons contributes to the anode current.
Both the thermal model for a finite size emission patch, as well as the
present model for monoenergetic emission with a vanishingly small
dimension, require careful resolution of the potential minimum at the
virtual cathode. It is this potential minimum, especially when it is very
close to the cathode surface, that causes the most challenge in the
numerical solution to both models. This makes a comparison of the pre-
sent theory difficult because our theory is independent of materials
property, whereas thermionic emission depends sensitively on cathode
temperature and work function. Despite such limitations, the present
theory is in qualitative agreement with the theory and simulations on
realistic thermionic cathodes with nonuniform emission.

Prior work on emission from a 2D stripe shows the scaling law,
Eq. (1.2), to be valid up to a fairly large value of d/W = 10. This scal-
ing law is insensitive to the initial electron velocity assumed, as long as
A < 1. This scaling is not valid in the limit d/ W approaching infinity,
and it is the main purpose of this paper to analyze this limit
(W — 0). Despite the detailed analysis given in this paper, how to
continuously generalize the scaling law (1.2) beyond d/W =10
remains an open question. For one thing, it depends on A, as shown
in Fig. 6. In an extension to thermal emission in the W — 0 limit
(which is yet to be done), the critical current would then depend on
the work function and on the surface temperature. It follows that the
anode current from local “hot spots,” which contribute significantly to
the total anode current,”* would depend on the physical causes of
strong electron emission at such hot spots.

Nonetheless, the total current reaching the anode is still
roughly governed by the 1D CLL, as if the entire cathode were emit-
ting. Once more, this statement is independent of the materials
properties, emission mechanism, surface roughness, with hot spots
or not, in a 2D or 3D analysis. This remarkable feature is perhaps
another aspect of the restriction on the total charge, Q ~ CV,
imposed on a diode of vacuum capacitance C, according to an inter-
pretation of CLL in terms of the vacuum gap capacitance.”"*
Interestingly, if a transverse magnetic field B, in the y-direction in
Fig. 1(a), is imposed, the anode current changes only from 100% to
80% of Jor when B is increased from 0% to 90% of the Hull cutoff
magnetic field By, for both zero electron emission velocity’” and
thermal emission model’® (both assuming uniform emission on the
cathode surface, and the z-component of the external magnetic field
removed.) These new insights provide some physical basis for the
customary use of the 1D CLL to assess the runaway current during
diode closure (both nonmagnetized and not fully magnetically insu-
lated ones), by using the instantaneous gap spacing (d — ut) in the
1D CLL, where u is the diode closure veloci'[y.37

In writing Eq. (4.4), we assume that the average anode current
does not exceed the 1D CL value. There is no reason why this must
be so, even though previous analyses'”'* show that the 1D CL is
always approached at a sufficiently high temperature. It is also not
known if such a purely static theory may yield a steady state that is

pubs.aip.org/aip/pop

reached nonlinearly in an emission model that includes a
small thermal effect,”® with an injection current density exceeding
the 1D Child-Langmuir law.

Finally we note that by finding non-zero solutions for delta-
function current density profiles, we have demonstrated that it is pos-
sible in principle to exceed J¢ locally by an arbitrary large (ie.,
“infinite”) factor. An interesting question that naturally arises is
whether, by spacing such thin sheets periodically by some period p,
the period-average current density could exceed Jc;. Our preliminary
answer to this question is no, based on initial results from an on-going
study.
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APPENDIX A: NUMERICAL SOLUTIONS TO EQ. (3.4)

We numerically solved Eq. (3.4) using the iterative scheme, Eq.
(2.10), and the trapezoidal method of integration. To start the itera-

tion (k = 0), we set 5(0) (z) = z. The algorithm would halt when

a(k) (z) < —A at any value of Z between (0,1). We remark here that
the evaluation of Eq. (3.4) is much more straightforward than that
of Eq. (3.10), which becomes apparent in Appendix B, as the inte-
gral in Eq. (3.4) is always finite.

As discussed in the paragraph following Eq. (3.5), we ran
numerical tests with normalized injection energies of A = 0, 1073,
and 2. We first spot-checked that for values of J (1) below the Jaffe
value, Eq. (3.6), the iteration scheme converged after some k-steps.
We next narrowed down the limiting current values by setting the
current density slightly above the values given by Eq. (3.6) and not-

. . — (k) —
ing the current densities when d)( )(z) < —A for some value of Z.
When performing these numerical tests, we found that a larger
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number of grid points was needed for the potential to converge as
the current densities approached the limiting values. Using this pro-
cedure, we were able to narrow down the limiting currents with
numerical errors of less than 0.5% of the Jaffe value for A =0,
1073, and 2 (see Fig. 4).

Thus, in general, we can only find the critical value of K to be
within a certain range in the integral equation formulation, for a
given A. At the lower bound of this range, the iteration (2.10) con-
verges. At the upper bound of this range, the solution ¢(z) does

not exist because 5(” (z) < —A for some value of z after some
k-iterations. This approach appears sound because it is able to
recover Jaffe’s critical K to within 0.5%, with a potential profile
showing ¢(Z) > —A for A = 2 (Fig. 5), meaning that all electrons
move with a forward velocity at the critical K, even at the potential
minimum as predicted by Jaffe.””

APPENDIX B: NUMERICAL SOLUTIONS TO EQ. (3.10)

Equation (3.10) is also numerically solved using an iterative
scheme, Eq. (2.10), and the trapezoidal method of integration. We

again set 5(0) (z) = z to initiate the iteration. In this case, however,
it becomes important as to how the singularity, at z. =z, in the
integrand of Eq. (3.10) is treated. Here, we employ two different
methods.

The first approach, which we refer to as the “midpoint meth-
od,” considers a grid of evenly spaced z values inclusively between
(0,1) and sets the z. grid as the set of midpoints between each z
value (the Z, grid therefore consists of one less point than the z
grid). This way, the singularity (z. =Z) in the integrand of Eq.
(3.10) is “skipped over” and any numerical issues involving this sin-
gularity are thus ignored. This, however, also means that the mid-
point method becomes less accurate for larger grid spacings as
contributions due to this singularity are more significant
comparatively.

The second approach, which we call the “singularity inclusion
method,” considers the two grid cells surrounding the singularity at
Z. =Zz. These two grid cells include the two intervals, z — Az,
<Zz.<7zandz <z, <z + Az, where the grid spacing is AZ.. We
divide this region (z — Az, <z, < Z + Az,) into 20 equally-spaced
components. The 18 components away from the singularity may be

routinely evaluated, upon linearly interpolating $(k> (Zc) using

a(kil)(a) at the two neighboring sub-grid points among the 18

components. In other words, we have, for each of these 18
components,

=¢ )(2 +iAZ./N)
o @+ i+ 182 N) -
Az /N,
x (z. — (z + iAzZ./Ny)),
Z + iAZ. /N, < Z. <Z + (i + 1)AZ./N;,
i=1,2,...,N,—1, (Bla)

(k=1) _ .
Z + iAZ./N;
. (2 -+ iAZ,/N)
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=3 (@ - (i+1)Az/N,)
3"V —inz N -3V (z - (i + 1)z N,)
Az/N,
x (zc — (z = (i+1)Az./Ny)),
Z— (i+1)AZ./N, < Z. < 7 — iAZ./N,,
i=1,2,.., N —1, (B1b)

where N; = 10 is the number of components between z, =z and
Z. =2z + AZ. as well as between Z, =7z — AZ, and Z, =Z. We
may now concentrate on the singularity contribution in the region
(z — Az, /N, < Z. < Z + Az./N;) by first re-writing Eq (3.10) as

— (k)

s (E):Z—i-KZJI dzc

0 (a(k_l)(zc)—i-A) 1/2
xln[

sin(%(—?—l—%c)) ”

1 dz. C(m
_KZJO—((k—I) - )1/2ln |:SIH<E(Z+ZC)>:|7
¢ (z)+A
0<z<1, (B2)

where the third term on the RHS of Eq. (B2) may be computed
accurately as the logarithmic term never diverges. Upon approxi-
mating In[[sin(n(—Z + Z.)/2)|] as In[|—z + Z.|] + In[r/2] when Z,
is very close to z, the contribution due to the second term on the
RHS of Eq. (B2) from the immediate vicinity of the singularity
(z— Az, /N, <z.<ZzZ+ Az./N;) may be computed in closed
form.

For each (K3, A) pair, we used the midpoint and singularity inclu-
sion methods to validate each other over varying N (N = total number
of grid points over the interval, 0 < z° < 1). Figure 7 shows an example
of this validation. We were able to obtain accurate estimates of the 2D
limiting current K, by plotting the minimum value of (¢(z) 4+ A) vs
N, finding the value to which min(¢(Z) + A) approaches at large N,
and then adjusting K, such that min(¢(z) 4 A) approaches zero. We
have empirically determined that the midpoint method tends to overes-
timate the exact value of min(¢(z) + A) for smaller N, as shown in
Fig. 7, and that the singularity inclusion method tends to oscillate about
min(¢(z) + A) with decreasing amplitude as N increases.

We have additionally tried a “polynomial method” of numeri-
cally evaluating Eq. (3.10) where we assume that ¢ (Z) takes on the
form, for a general A,

0y N
¢ (2) = anz", (B3)
m=1

in the argument inside the square-root of the integrand of Eq.

(3.10). We may then solve for $(k> (z) by determining the coeffi-
cients ay, ..., ay. We notice, however, that our results only con-
verge when M > 10, making this method quite computationally
expensive as it involves the inversion of M x M matrices.
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FIG. 7. Convergence of the value of min(¢(z) + A) as function of the number of
grid points N for A = 1 x 1073 and K, = 4 x 102 using the two different numer-
ical algorithms described in Appendix B.

APPENDIX C: PROOF OF NULL SOLUTION TO EQ. (3.10)
WHENA=0

Equation (3.10) may be rewritten as with A = 0,

0(z,K) =2 +KS(z,K,), 0<z<1, (Cla)
. . sin(g (—z +zc))‘
S(z,K,) = JO e ; i In . (Clb)
Zey 2

sin G (z+ zc)>

We note that ¢ (z) < Z since S(z,K,) < 0.1t thus follows that

sin G (—z + zc)) ‘

where $(©(Z) refers to S(z) in the zeroth iteration (k = 0) since we

—0),_\  _ _ . .
take d)( (z) = z. Next, we concentrate on small z, in particular
Z — 07, as we wish to prove nonexistence of solution even for a
very small, nonzero value of K,. We write

§9z) = 51(2) + $:(2), (C3a)
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1
S, (z) = J 7d?c2 In = $4(z) + S25(2),
2z sln(g (E—FZC))
(C3¢)
n
sin (f (-z+ EC))
€ J= 2
sule) = [ 2ot L@

' dz,
S(z) = J mln p ) (C3e)
e Z¢ Sin(a (E +zc)>

where ¢ =Z./Z in Eq. (C3b) and we have chosen an € such that
Z < € < 1 (forz — 0™). This allows us to approximate

_ < dz -Z+1Z i, [FaE [E—1
S ~ [ =£1 C:1/2J 1
ne chl/zn[ﬂzc} 2| |

Cdx | [x—1 bge 1-¢
~z/2| =z'2| Z=n|——= 4
‘ Jl x!/2 nL‘ﬂLJ ‘ Lés/z nLJFf]’ ()
where ¢ = 1/x in the last integral, which is a finite constant.

We shall momentarily show that Syp(z) < Sy4(Z) in magni-
tude, whence Egs. (C3) and (C4) give

$Z) = $1(Z) + $4(2) + $2(2) = §(Z) + $4(2)

i [HdE 1 1-¢ _
~ z1/2 1/2
~Z Jo 7 (1 + gl/z)m(l f) = =2nz/". (C5)

To show that S,(z) is small compared with $,4(z) in magnitude,
we expand sin(n(z*z.)/2) for vanishingly small z, recalling that
Z < e lande <z, <1 in Eq. (C3e). We then obtain from Eq.

(C3e),
(nfc)
[0} 7
1— 7'[27_
. [Tz,
sin{ —
( 2 )
nZ,
_ Jl dz, “°\ 2
~ —7nz —_—
cZM? (HEC>
sin| —
2

4
~ M = —4z'2(z /)" < |Su(z)].  (C6)
e

U dz.

EEC

In

S28(z) =~ J

In the second integral of Eq. (C6), we estimate its value by noting
that the dominant contribution comes from its lower limit
(z¢ ~ €). Therefore, for very small values of z, we obtain from Egs.
(Cla) and (C2),

—(1)

¢ (z,K) <z +KS9z). (C7)
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Substitution of Eq. (C5) into Eq. (C7) yields 5(1)(2,K2) < 0 when
z1/2 < 27K,. This means that Eq. (Cla) has no iterative, real solu-
tion of ¢ regardless of how small is K;, as long as K, is nonzero.
This completes the proof.
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