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Preliminary experiments of the recirculating planar magnetron microwave source have

demonstrated that the device oscillates but is susceptible to intense mode competition due, in

part, to poor coupling of RF fields between the two planar oscillators. A novel method of

improving the cross-oscillator coupling has been simulated in the periodically slotted mode

control cathode (MCC). The MCC, as opposed to a solid conductor, is designed to

electromagnetically couple both planar oscillators by allowing for the propagation of RF fields

and electrons through resonantly tuned gaps in the cathode. Using the MCC, a 12-cavity anode

block with a simulated 1 GHz and 0.26 c phase velocity (where c is the speed of light) was able

to achieve in-phase oscillations between the two sides of the device in as little as 30 ns. An

analytic study of the modified resonant structure predicts the MCC’s ability to direct the RF

fields to provide tunable mode separation in the recirculating planar magnetron. The self-

consistent solution is presented for both the degenerate even (in phase) and odd (180� out of

phase) modes that exist due to the twofold symmetry of the planar magnetrons. VC 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4794967]

I. INTRODUCTION

The recirculating planar magnetron (RPM), shown in

Fig. 1, is a new type of cavity magnetron designed to provide

several geometrical advantages over its cylindrical counter-

part. These advantages include enhanced heat dissipation in

the anode, reduced loading on the cathode, higher beam cur-

rents, and favorable scaling of magnetic field volume.1,2

While anticipated to improve efficiency and peak power,

the RPM geometry introduces some additional complexity to

the operation of the device, as compared to the purely cylin-

drical alternative. Initial designs of the RPM have demon-

strated that the device oscillates but is susceptible to weak

electromagnetic coupling between the two planar slow-wave

structures which might cause several deleterious phenomena.

Two of the primary complications are:

(1) Cross-oscillator mode competition (even and odd mode

development).3

(2) Phase drifting and offsets between oscillators during

operation, which has been shown in both simulations4

and demonstrated in experiments as depicted in Fig. 2.

This paper proposes the mode control cathode (MCC),

shown in Figs. 3(a) and 3(b), as a means of alleviating mode

competition and eliminating phase mismatches by improving

both mode separation and cross oscillator coupling.

II. COUPLING IN THE RPM

The RPM (Fig. 1) is more appropriately regarded as two

distinct arrays of planar oscillators, in contrast to a conven-

tional cylindrical magnetron with a single uniform slow

wave structure.1 The two resonant arrays, which are predom-

inantly isolated by the conducting boundary at the cathode,

are only coupled at either end of the device by cylindrical

smooth-bore sections. These adjoining regions, designed pri-

marily to preserve beam current, often fail to maintain com-

plete synchronism of space charge bunches from one

oscillator to the other. The “detuned” electron beam must

then “re-bunch” as it traverses through each planar slow-

wave structure, which may adversely affect RF communica-

tion from the opposing side. The partially isolated oscillators

often fail to achieve a global locked mode during operation

and instead exhibit mode competition and beating between

each of the separate oscillators.

Enhanced coupling has been proposed through several

other potential mechanisms including continuous slow-wave

structures (cylindrical and planar cavities), capacitively

coupled anode cavities (inverted magnetron configuration

only), and anode strapping although most of these alternatives

fail to completely address the issue in a convenient

manner.1,5–9 Resonant slow-wave structures are difficult to

match across multiple sections and can support dissimilar

mode development between cylindrical and planar oscillators.

These structures also require larger area anodes and increase

the complexity of maintaining balanced cavity loading while

extracting power. Capacitively coupled cavities, in an inverted

magnetron configuration, require resonantly tuned slots across

the interior of the anode and therefore must take the place of

or coexist with extraction waveguides. Lastly, anode strapping

has been shown to induce breakdown across oppositely polar-

ized vanes in relativistic magnetron operating regimes.9,10

The MCC presents a potentially more effective and con-

venient means of improving cross-oscillator coupling in the

RPM by enabling the cathode to resonantly propagate the RF

fields and electron bunches from one oscillator to the other

during operation.
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The periodically slotted geometry of the MCC is similar

in form to a linear version of the transparent cathode, which

has been shown to improve efficiency and start up time in

relativistic cylindrical magnetrons.11 The MCC, however,

utilizes tuned waveguides in the electrode to act as an elec-

tromagnetic coupler for the opposing slow wave structures

rather than purely a mechanism to maximize the static elec-

tric fields at the surface of the conductor. The MCC, by

design, facilitates a global mode structure which extends

across the horizontal plane of symmetry in the RPM.

Additionally, counter-propagating electron beams denoted

by the (“thick”) arrows in Fig. 3(a) readily circulate through

the cathode waveguides acting to both excite and prime the

desired RF mode of both oscillator sets simultaneously. The

waveguide slots in the cathode were placed under every cav-

ity of the slow wave structure to maximize both the magni-

tude of the transverse electric field, Ey (see Fig. 4 for

coordinates), reaching the opposing oscillator as well as to

enhance emission priming of the p-mode.12 The even p-

mode electric field configuration shown in Fig. 3(b) can also

lead to cross-oscillator “self-focusing,” wherein space charge

beneath a cavity exhibits the same ERF � B drift direction

regardless of its position in (x).

III. DISPERSION RELATION

The RPM is susceptible to a high degree of mode com-

petition, particularly from the closely spaced degenerate

even and odd p-modes that share the same guided wave-

length in the planar magnetron.3,6 The MCC, which pos-

sesses greater geometric flexibility in size and shape than the

standard solid cathode, can mitigate this mode competition

by offering a viable mechanism to tune the resonant cavity

of the RPM independently from the anode. The mode separa-

tion provided by the MCC is solved for analytically by eval-

uating the full dispersion relation as a function of the

cathode’s tunable parameters: cathode height (h2), slot width

FIG. 3. (a) RPM slow wave structure with slotted mode control cathode;

black arrows illustrate externally applied electrostatic fields, thick arrows

represent the E � B drift of the electron beam. (b) RPM slow wave structure

with the slotted mode control cathode; black lines illustrate the RF electric

field configuration of the even p-mode.

FIG. 4. The upper half of a single 2D resonant cavity in the RPM representing

the simplified modular geometry used to solve for the MCC dispersion relation.

FIG. 1. A 2D rendered image of the RPM-12a anode structure viewing the

front of the device. The center plate is the cathode; the anode periodic struc-

tures are above and below the cathode, and the axial magnetic field points

out of the page.

FIG. 2. Experimental b-dot signal of horizontally symmetric cavities on the

top and bottom oscillator in the recirculating planar magnetron.
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(w2), and AK gap (b). Figure 4 illustrates the analytic setup

of a single cavity in an infinite array (in y) with period L.

The operating mode of the device is determined by both the

propagation constant in (y) for the nth spatial harmonic bn

(where bn¼b0 þ 2pn/L, b0 is the fundamental harmonic),

which identifies the phase shift per cavity, as well as the

boundary condition along the horizontal symmetry plane

(x¼�h2), which defines either the even or odd mode planar

degeneracy in the RPM. The even mode, characterized by a

0� phase shift between mirrored cavities, reaches a local

maximum along the symmetry plane. The odd mode, which

corresponds to 180� phase shift between horizontally sym-

metric cavities, produces a null in the same plane. Thus, the

boundary conditions are

dEy

dx
¼ 0 at x ¼ �h2 ðevenÞ; (1)

Ey ¼ 0 at x ¼ �h2 ðoddÞ: (2)

The propagation constant for the (x) direction, denoted as cn

in expressions (3)–(5), is defined in terms of bn as

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n � x
c

� �2
q

. The dispersion relation for an infinitely

long set of identical cavities is solved by matching the im-

pedance at both boundary I-II and boundary I-III in Fig.

4.6,13,14 A constant electric field is assigned across these

boundaries in order to simplify the matching conditions. The

use of a divergent fringing RF electric field, which resulted

from the sharp corners at the mouth of the cavities, would

modify the cold tube frequency at most by 3% for the first 4

radial modes of a cylindrical magnetron waveguide, as dem-

onstrated in Appendix B of Ref. 15. The detailed derivation

for the even mode dispersion relation is found in Appendix

A. It should be noted that the TM mode is not considered in

this derivation because its dominant electric field is orthogo-

nal to the E�B drifts of the electrons and is therefore unim-

portant to magnetron operation.

Even mode dispersion relation:

UV ¼ �YZ; (3a)

V ¼ sin
xh2

c

� �
þ cos

xh2

c

� � X1
n¼�1

x
cnc

w2

L

� sinc2 bnw2

2

� �
cothðcnbÞ; (3b)

U ¼ cos
xh

c

� �
� sin

xh

c

� � X1
n¼�1

x
cnc

w1

L

� sinc2 bnw1

2

� �
cothðcnbÞ; (3c)

Z ¼ w1

L

X1
n¼�1

x
cnc

sin
xh

c

� �
sinhðcnbÞ sinc

bnw2

2

� �
sinc

bnw1

2

� �
; (3d)

Y ¼ w2

L

X1
n¼�1

x
cnc

cos
xh2

c

� �
sinhðcnbÞ sinc

bnw2

2

� �
sinc

bnw1

2

� �
:

(3e)

The odd mode dispersion relation is similarly obtained. It reads

Odd mode dispersion relation:

UV ¼ YZ; (4a)

V ¼ cos
xh2

c

� �
� sin

xh2

c

� � X1
n¼�1

x
cnc

w2

L

� sinc2 bnw2

2

� �
cothðcnbÞ; (4b)

U ¼ cos
xh

c

� �
� sin

xh

c

� � X1
n¼�1

x
cnc

w1

L

� sinc2 bnw1

2

� �
cothðcnbÞ; (4c)

Z ¼ w1

L

X1
n¼�1

x
cnc

sin
xh

c

� �
sinhðcnbÞ sinc

bnw2

2

� �
sinc

bnw1

2

� �
; (4d)

Y ¼ w2

L

X1
n¼�1

x
cnc

sin
xh2

c

� �
sinhðcnbÞ sinc

bnw2

2

� �
sinc

bnw1

2

� �
: (4e)

In the limit that the slot width w2 approaches zero, forming a

solid cathode, the function Y tends to be 0 in Eq. (4e). Since

the relation (V) is finite in this limit, the function (U) must

also be zero to satisfy Eq. (4a). Setting the LHS of Eq. (4c)

equal to zero allows for the recovery of the classic planar

cavity dispersion relation13,14

cot
xh

c

� �
¼
X1

n¼�1

x
cnc

w1

L
sinc2 bnw1

2

� �
cothðcnbÞ

� �
: (5)

The solutions for Eqs. (3) and (4) are validated using the fi-

nite element field solver High Frequency Structure Simulator

(HFSS).16 The simulation geometry is setup by creating a

cavity set (a single cavity from the top and bottom oscillator)

and applying a pair of master-slave boundary conditions

(Fig. 5) at y¼6L=2. These boundary conditions are defined

by a designated RF phase shift across the structure and are

used to isolate only the modes with a given propagation con-

stant (b0) in (y). A parameter sweep is performed by setting

the slave boundary to a variable phase delay and swept from

0 to 360� to represent all possible modes that could exist in

an N cavity array as N goes to infinity, where N is the num-

ber of cavities. The simulated case was designed to resemble

the existing RPM-12a anode at the University of Michigan,3

with parameters listed in Table I.

The RPM-12a is an un-capped resonant structure specifi-

cally designed to mitigate axial variation in the electric

field.6 Therefore, the infinitely uniform axial electric field

profile assumed in our 2D analytic model matches well with

the actual resonant frequency of the RPM-12a. The resonant

frequency and mode separation between even and odd

p-modes are relatively constant for variations in axial length

of the anode. Higher order axial modes are undesirable for

magnetron operation and are not considered in this study.

The resultant frequencies obtained from the numerical

eigenmode search and from the analytic dispersion solutions
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(Eqs. (3a) and (4a)) as a function of phase shift per cavity

are plotted in Fig. 6, where b0¼ 2p=kg¼ 2pðd/Þ=ð360�L),

ðd/Þ is the phase shift per cavity in degrees, and kg is the

guide wavelength. General agreement is noticed.

This analysis is applied to mode separation by selecting

a primary mode (p-mode) and numerically solving for the

difference in frequency between the even and odd dispersion

solutions. We calculate the difference in the two resonant

frequencies as a function of cathode height (h2) in Fig. 7(a),

cathode slot width (w2) in Fig. 7(b), and AK gap (b) in Fig.

7(c).

Figs. 7(a)–7(c) show that the separation between even

and odd p-modes decreases monotonically with increasing

cathode thickness (h2) or AK gap (b) while there exists an

optimal cathode slot width (w2) between w2¼ 0 (no slot) and

w2¼ kp/2¼L (no cathode). Under realistic parameters (AK

gap > 1 cm) even-odd mode separation can theoretically

reach 100 MHz, but this separation is reduced as the AK gap

is increased past 1 cm. Long-pulse relativistic devices typi-

cally require larger AK-gaps due to plasma expansion from

the cathode and subsequent gap closure in the diode, which

may limit pulse duration or mode separation.

IV. ELECTROMAGNETIC PARTICLE IN CELL
MODELING OF THE MODE CONTROL CATHODE

The MCC, in addition to providing enhanced mode dis-

crimination, will act to prime the p-mode operation via the

periodic emission structures.12 It also offers additional mode

stability through cross-oscillator coupling. Analysis of this

concept is performed by simulating the RPM-12a anode

structure in the 2D particle in cell code, MAGIC. Re-entrant

boundary conditions are imposed on either end of a 6-cavity

model,17 in order to artificially remove secondary cross os-

cillator coupling mechanisms, such as coupling through the

cylindrical recirculation regions, and establish the MCC as

the primary source of communication between each planar

cavity array. The recirculation sections, independently from

FIG. 5. Front facing perspective of two separate cavities in HFSS illustrating

the boundary conditions as well as the electric field vectors for the even

(left) and odd (right) p-modes.

TABLE I. University of Michigan, RPM-12a, experimental geometry and

dimensions.

Cavity width (w1) 0.0192 m

AK gap (b) 0.024 m

Cathode slot width (w2) 0.02 m

Cavity height (h) 0.063 m

Cathode half height (h2) 0.004 m

Axial depth (z) 0.11 m

Periodicity (L) 0.0384 m

FIG. 6. Analytic (solid line) and simulated (x-marker) dispersion relations

for the even and odd p-modes.

FIG. 7. Analytic mode separation results between the even and odd pi-

modes; (a) varying parameter: h2, set w2¼ 0.024 m, AK¼ 0.01 m; (b) vary-

ing parameter: w2, set h2¼ 0.002 m, AK¼ 0.01 m; (c) varying parameter: b,

set w2¼ 0.024 m, h2¼ 0.002 m.
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the MCC, provide a boundary condition that supports mode

separation between “even” and “odd” operating modes.

Mode separation, in these cases (using a solid cathode), is

typically much less than with the MCC suggesting its impact

is limited. Additionally, this section is not as dynamic or tun-

able as the MCC as it must also be designed to minimally

affect space charge spoke propagation and limit desynchro-

nization of the beam and RF wave.

Each simulation used an applied voltage of �300 kV for

300 ns on either a solid conducting cathode (Fig. 8(a)), to

isolate the two sides, or the MCC (Figs. 8(b) and 8(c)) with a

slotted geometry. The MCC’s geometry is described by the

following parameters: AK gap (b) of 2.4 cm, cathode slot

width (w2) of 1.92 cm, and cathode height (h2) of 0.5 cm.

Each simulated case applied a different axial magnetic field,

which varied from 0.1 T to 0.35 T in order to observe several

excitable modes in the RPM.

The principal operating modes identified in this study

were the 4p/6, p-even (Fig. 8(b)), p-odd (Fig. 8(c)), 7p/6,

and 8p/6 modes. Note that the even-p mode, despite the sym-

metry in the RF electric field, displays anti-symmetric spoke

formation due to the ERF � B drift vector. The simulated

results, for the MCC, are plotted against the theoretical

Buneman-Hartree condition in Fig. 9, which reads9,18–20 (b is

the phase velocity of the mode in units of the speed of light)

eV

mc2
¼ eBb

mc
b� ½1� ð1� b2Þ

1
2�: (6)

The p-mode field configuration was the dominant mode

structure for magnetic fields between 0.12 T and 0.27 T, far

surpassing the range predicted by the planar Bunemann-

Hartree theory. Neighboring modes including 7p/6 and 8p/6

developed at applied fields of 0.28 T and 0.33 T, respec-

tively. The solid conducting cathode results (not shown)

demonstrated p-mode operation between 0.15 T and 0.20 T,

outside of which severe competition with neighboring modes

was evident. The enhanced mode stability provided by the

MCC is largely dependent on the presence of cross oscillator

coupling as local perturbations imposed on one side of the

device can be readily corrected by stable operation of the

other side and vice versa. The extent of this coupling can be

directly controlled by manipulating the geometry of the cath-

ode to vary the amount of RF power coupled between the

top and bottom slow wave structures.

A series of simulations were performed in which the AK

gap (b) was linearly varied from 1.0 cm to 3.2 cm in order to

alter the magnitude of the transverse electric field (Ey) at the

cathode. Since the device exhibits some duality between

operating as two separate oscillators and a single resonant

structure, initial mode development may sometimes lack

phase coherency between the two sides. Due to this phenom-

enon, both oscillation start-up times and phase locking times

were monitored for each simulated case. In this study, oscil-

lators are considered locked when the relative phase between

FIG. 8. MAGIC PIC phase space images: (a) solid cathode p-mode spoke

formation, (b) even p-mode spoke formation using the MCC, and (c) odd p-

mode spoke formation using the MCC.

FIG. 9. Simulated results from MAGIC PIC plotted against the relativistic

planar Bunemann-Hartree conditions for different modes, with the phase ve-

locity labeled in parenthesis (5p/6 and 7p/6 curves, which exist between 4p/

6 and 8 p/6, are not shown).
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two mirrored cavities on the top and bottom does not vary

more than 62� for 50 ns.21–23 Simulations were modeled

using a 0.18 T uniform axial magnetic field (B) for 300 ns

and the applied voltage (V) was varied to scale the electric

field as dictated by Bunemann-Hartree condition for the even

p-mode in a planar diode (�150 kV to �500 kV). All simula-

tions, which achieved locking using the MCC, operated in

the even p-mode electric field configuration shown in Fig.

8(b), the odd p-mode fields (Fig. 8(c)) are resonant at lower

phase velocities and were easily isolated from this portion of

the study.

The simulated control case (Fig. 8(a)), with a solid alu-

minum cathode and 2.4 cm AK gap, demonstrated p-mode

oscillations after approximately 100 ns but never fully satis-

fied the locking condition over the course of the 300 ns simu-

lation. The MCC was not only able to readily produce

p-mode oscillations in less than 30 ns, under the same operat-

ing conditions, but also reached a phase-locked state between

opposing slow wave structures in less than 100 ns. The trend

of relative start up times (defined as the time required for the

magnetron to produce p-mode space charge spoke forma-

tions whose height exceeded the AK gap) and locking times

as a function of AK gap are shown in Fig. 10.

The time required for the top and bottom oscillators to

lock increases exponentially with the AK gap varying from,

approximately 30 ns at b¼ 0.012 m to 250 ns at b¼ 0.032 m.

In the limit that the AK gap goes to zero, the 12-cavity slow

wave structure more closely resembles 6 isolated resonators

that by definition share the same frequency and phase.

Resonant structures with small AK gaps (b� w1), however,

demonstrate a strong disparity between the RF fields under

vanes versus under the cavities and often fail to develop a

stable operating mode.

V. CONCLUDING REMARKS

Theory and simulation show that the mode control cath-

ode is a practical means of enhancing mode separation,

improving start up times, and enabling cross-oscillator

coherency in the recirculating planar magnetron. The appli-

cation of this concept is largely dependent on both the geom-

etry of the cathode and anode and may have diminishing

utility in diodes with large separation between anode and

cathode.

RF extraction was not studied here as we focus on the

effect of the cathode on the RF dispersion and mode

development. The inclusion of an extractor scheme is antici-

pated to heavily reduce the Q of the RPM and improve over-

all locking time of the device as locking time is typically

proportional to Q.21–23

Experiments are underway to employ the MCC in the ex-

perimental RPM-12a at the University of Michigan. Calibrated

B-dot loops, measuring mirrored cavities on the top and bottom

oscillators, are used to diagnose phase locking.
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APPENDIX: EVEN MODE DISPERSION

This appendix establishes the dispersion relation (3a) for

the even p-mode for the mode control cathode in an infinite

array of cavities in a planar magnetron. The odd mode solution

is established similarly. Referring to the geometry displayed in

Fig. 4, the electromagnetic solution is divided into three distinct

regions: AK gap-I, cathode slot-II, and cavity-III.

Region 1: 0 < x < b and �L/2 < y < L/2

Hz ¼ jejxt
X1

n¼�1
½An coshðcnxÞ þ A0n sinhðcnxÞ� e�jbny; (A1)

jx�Ex ¼ �bnjejxt
X1

n¼�1
½A0n coshðcnxÞ þ An sinhðcnxÞ�

� e�jbny; (A2)

jx�Ey ¼ �ejxt
X1

n¼�1
½A0ncn coshðcnxÞ þ A0ncn sinhðcnxÞ�

� e�jbny: (A3)

Region 2: �h2 < x < 0 and –w2/2 < y < w2/2

Ey ¼ B
0
sin

xðxþ h2Þ
c

� �
þ B cos

xðxþ h2Þ
c

� �� �
; (A4)

�jxlHz ¼
x
c

B
0
cos

xðxþ h2Þ
c

� �
� B sin

xðxþ h2Þ
c

� �� �
:

(A5)

Region 3: b < x < d and –w1/2 < y < w1/2

Ey ¼ ejxtD sin
xðx� dÞ

c

� �
; (A6)

�jxlHz ¼
Dx
c

cos
xðx� dÞ

c

� �
: (A7)

The degeneracy experienced by the RPM can be isolated (to

either the even or the odd mode) analytically by the bound-

ary condition applied at the horizontal plane of symmetry

FIG. 10. Simulated results showing oscillation start up times (x) and phase

locking times (dots) as a function of the AK gap.
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(x ¼�h2). The even mode, whose electric field EyII

experiences a local maxima where the derivative dEy/dx¼ 0.

Applying this boundary condition to the TEM solution

presented in Eqs. (A4) and (A5) we can obtain the following:

EyII ¼ B cos
xðxþ h2Þ

c

� �
; (A8)

�jxlHzII ¼ �B
x
c

sin
xðxþ h2Þ

c

� �
: (A9)

Treating the cavity as a shorted parallel plate transmission

line, the RF field at the vane tips reads

EyIII ¼ D sin
xðb� dÞ

c

� �
: (A10)

Resonance is achieved by matching the impedance at each

interface (I-II and I-III). Classically this impedance matching

is performed by ensuring continuity of the point-wise electric

field Ey and average magnetic field Bz across the boundary.

The RF electric fields in the AK gap (region I) is represented

as a summation of an infinite combination of spatial harmon-

ics in (A3) must therefore be set equal to the value of the of

the cavity field (EyIII) at the I-III interface (x¼ b)

�Dsin
xh

c

� �
¼
X1

n¼�1

�cn

jxe
e�jbny½An sinhðcnbÞ

þA0n coshðcnbÞ�: (A11)

Applying Fourier analysis over the period L the following

expression relating the coefficients (An, A0n, D) is obtained.

Let

�cn

jxe
½An sinhðcnbÞþA0n coshðcnbÞ�¼D

w1

L
sin

xh

c

� �
sincðh1Þ;

(A12)

where sincðxÞ ¼ sinðxÞ
x . We define h1¼bn w1/2 and h2¼bn

w2/2.

In a similar fashion Ey must also be continuous across

the I-II boundary at x¼ 0, relating (A0n, B) upon setting

B0 ¼ 0 in Eq. (4a) for the even mode.

�cn

jxe
A0n ¼ B

w2

L
cos

xh2

c

� �
sincðh2Þ: (A13)

The average magnetic field, HZI and HzIII, must be equal

across the I-III interface which is performed by integrating

(A1) with respect to (y) from y¼�w1/2 to y¼w1/2 and

dividing by w1. Equation (A14) relates the coefficients (An,

A0n, D)

�1

jl
D

c
cos

xh

c

� �
¼
X1

n¼�1
½An coshðcnbÞ

þA0n sinhðcnbÞ� sincðh1Þ: (A14)

Applying the same analysis to the magnetic field across the

I-II boundary at x¼ 0, relating (An, B)

1

jl
B

c
sin

xh2

c

� �
¼
X1

n¼�1
An sincðh2Þ: (A15)

Using Eq. (A13) solve for the unknown coefficient A0n

A0n ¼
�jxe B

cn

w2

L
cos

xh2

c

� �
sincðh2Þ: (A16)

The expression determined in Eq. (A16) may then be

plugged directly into Eq. (A12) to yield

An ¼
Djx�

c
w1

L
sin

xh

c

� �
sincðh1Þ
sinhðcnbÞ

� �

þ jxe B

cn

w2

L
cos

xh2

c

� �
sincðh2ÞcothðcnbÞ: (A17)

Using Eqs. (A16) and (A17), the bracket in the RHS of Eq.

(A14) can be expressed in terms of the coefficients of the

cavity field (D) and the cathode field (B):

An coshðcnbÞ þ A0n sinhðcnbÞ ¼ Djx�
cn

w1

L
sin

xh

c

� ��

�sincðh1ÞcothðcnbÞ
�
þ jxe B

cn

�
w2

L
cos

xh2

c

� �

�sincðh2ÞcothðcnbÞcoshðcnbÞ � w2

L
cos

xh2

c

� �

�sincðh2ÞsinhðcnbÞ
�
: (A18)

Upon using the hyperbolic trigonometric identity

cosh2(x)�sinh2(x)¼ 1 for all x, Eq. (A18) becomes,

An coshðcnbÞ þ A0n sinhðcnbÞ ¼ Djx�
cn

w1

L
sin

xh

c

� ��

�sincðh1ÞcothðcnbÞ
�
þ jxeB

cn

w2

L
cos

xh2

c

� �
sincðh2Þ

sinhðcnbÞ

2
664

3
775:

(A19)

Putting Eq. (A19) into Eq. (A14), we have

�
D cos

xh

c

� �
jlc

¼
X1

n¼�1

jx�
cn

D
w1

L
sin

xh

c

� ���

� sincðh1ÞcothðcnbÞ
�

þ B

w2

L
cos

xh2

c

� �
sincðh2Þ

sinhðcnbÞ

0
BB@

1
CCAsincðh1Þ

#
:

(A20)

Pulling all the terms with the coefficient D to one side and

replacing the following relation for the speed of light

c ¼ 1
�ðl0�0Þ

, Eq. (A20) is written as

D � U ¼ B � Y: (A21)

033108-7 Franzi et al. Phys. Plasmas 20, 033108 (2013)



Providing the same analysis with Eq. (A11) and using Eqs.

(A16) and (A17), we obtain

B � V ¼ �D � Z; (A22)

where U, V, Y, and Z are

V¼ sin
xh2

c

� �
þ cos

xh2

c

� � X1
n¼�1

x
cnc

w2

L
sinc2ðh2ÞcothðcnbÞ;

(A23a)

U¼cos
xh

c

� �
�sin

xh

c

� � X1
n¼�1

x
cnc

w1

L
sinc2ðh1ÞcothðcnbÞ

	 

;

(A23b)

Z ¼ w1

L

X1
n¼�1

x
cnc

sin
xh

c

� �
sinhðcnbÞ sincðh2Þsincðh1Þ; (A23c)

Y ¼ w2

L

X1
n¼�1

x
cnc

cos
xh2

c

� �
sinhðcnbÞ sincðh2Þsincðh1Þ: (A23d)

Multiply (A21) and (A22), cancel the like (D*B) term on both

sides of the equation to yield the dispersion relation (3a)

UV ¼ �YZ: (A24)
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