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figure, r̂ is into the page and ẑ is the vertical axis. . . . . . . . . . . 35

2.11 The radial component of E×B. The darker red regions are directed
radially inward more strongly. These regions are generally found on
the top of the MRT instability lobes and contribute to the axially
asymmetric roll-up features by creating a horizontal shear in E×B
drift in addition to the axial velocity shear. Note that the x̂ direction
in this plot is the radial direction and the positive direction is to the
right in this figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Axial component of E×B within a cross-sectional slice of the plasma
column. This shows that at the edges of the plasma column, there is
generally a significant increase in upwards E×B drift. . . . . . . . 37

viii



2.13 Comparison of thin-foil implosions for 4 different cases of on-axis
support rod radii: (a) 0.5 mm; (b) 0.25 mm; (c) 0.1 mm; (d) 0
mm (no rod). The time chosen for this comparison is 10 ns after
stagnation. The iso-density surface shown is 1 × 1019 cm−3. The
image in part (a) should be contrasted with Fig. 5 in Ref. [19] . . . 39

2.14 Time evolution comparison of thin-foil liner implosions for on-axis
support rod radii of (a) 0.5 mm and (b) 0 mm (no rod). The time la-
bels are relative to peak current. For ease of contrasting, the coloring
is based on distance from the cylindrical axis and is tinted slightly
red for the case with no support rod and slightly blue for the case
with the support rod. The iso-density surface shown is 1× 1019 cm−3. 41

2.15 Simulation of a thin-foil liner implosion with no support rod on axis.
The lack of a support rod allows a precursor plasma column to as-
semble on axis with various instability structures. A particularly
well-defined structure is identified by the white arrow. This structure
is tracked through stagnation and into the explosion phase. These
six frames illustrate that the morphology of the low-density precur-
sor plasma, which arrives on axis ahead of the imploding liner bulk,
is largely responsible for setting the morphology of the imploding
liner bulk during stagnation and explosion. This figure should be
contrasted with Fig. 13(b) in Ref. [51] . . . . . . . . . . . . . . . . . 44

3.1 Initial conditions of the simulation setup that shows the coronal layer
(6 × 1014 cm−3) and the liner plasma (3 × 1019 cm−3). In addition,
two single cell layers between the liner plasma and coronal plasma
are included that help to step the density down and reduce the sharp
density gradient. Note a uniform 2-T axial magnetic field is applied
throughout the simulation volume. . . . . . . . . . . . . . . . . . . . 48

3.2 Helical MRTI forming in the dense liner plasma 185 ns into the cur-
rent pulse. The iso-density surface shown is for 1024 m−3. Magnetic
field lines are traced in blue and current density streamlines are traced
in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Helical perturbation in the azimuthal component of the current den-
sity, plotted on an iso-density surface (1024 m−3) at 75 ns. This
highlights one of the perturbation effects of the Hall interchange in-
stability, which leads to helical formations in the current on the liner
plasma outer surface. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



3.4 Perturbation in the azimuthal component of the current density, plot-
ted with an iso-density surface slice of the liner plasma (1023 m−3)
at six time steps to show the process of the perturbations forming in
the coronal layer and embedding into the dense liner plasma. The
cylindrical axis of symmetry is the right edge of each image, while
the outer simulation boundary is the left edge of the images. . . . . 53

3.5 Perturbation in the radial component of current density, plotted on a
2-D slice from the simulation volume over top of which an iso-density
surface transparency of the dense liner plasma (1023 m−3) at four
time steps to show the process of the perturbations forming in the
coronal layer and extending into the liner plasma. . . . . . . . . . . 54

3.6 Plot of the azimuthal perturbation amplitude growth rate. The am-
plitude was taken by an axial line-out through the coronal plasma
subject to the Hall interchange instability. The growth rate found
from this analysis compares very closely to the growth rate predicted
by theory. The error bars are determined from one standard deviation
in the perturbation amplitude. . . . . . . . . . . . . . . . . . . . . . 56

3.7 Plot of the axial wave number of the perturbation in the azimuthal
current. The wave number is set within a few nanoseconds of the sim-
ulation and remains fairly constant throughout the period when the
interchange instability is still the most important instability (.80 ns). 57

3.8 Plot of a 2-D slice of Jθ from a 3-D simulation of a thin-foil z-pinch
with open outflow boundary conditions on the upper and lower z
boundaries at 50 ns. The Hall instability bunching of Jθ in the coronal
layer is evident as well as the filament of Jθ discussed in Seyler’s gas-
puff simulations [54]. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Plot of the azimuthal current density from a 2-D slice of the full 3-
D simulation at 75 ns with Hall physics omitted. This image also
has a partially transparent grey iso-density slice (1024 m−3) to show
the liner plasma. In this image, the lack of Hall physics prevents
the Hall instability dynamics, in the azimuthal current, to take place
and from the current bunching which has been discussed throughout
this dissertation. The cylindrical axis of symmetry (centerline) is the
rightmost edge of the image. . . . . . . . . . . . . . . . . . . . . . . 61

3.10 Plot of the azimuthal current density from a 2-D slice of the full 3-D
simulation at 75 ns with Hall physics included. This image also has
a partially transparent grey iso-density slice (1024 m−3) to show the
liner plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

x



3.11 Plot of the azimuthal current from a 2-D slice of the full 3-D sim-
ulation at 100 ns with Hall physics omitted. This image again has
a partially transparent grey iso-density slice (1024 m−3) to show the
liner plasma. In this later time step (relative to Fig. 3.9), the az-
imuthal current has compressed against the outer surface of the liner
plasma and shows no perturbation structures. . . . . . . . . . . . . 63

3.12 Plot of the azimuthal current from a 2-D slice of the full 3-D sim-
ulation at 100 ns with Hall physics included. This image again has
a partially transparent grey iso-density slice (1024 m−3) to show the
liner plasma. In this later time step with Hall physics (relative to Fig.
3.10), the azimuthal current in the coronal layer continues to display
the bunching and vortices that are the result of the Hall instability. 64

3.13 Plot of the azimuthal current density at 100 ns with Hall physics
omitted. This image is of a full 3-D iso-density surface (1024 m−3)
to show the liner plasma’s outer surface. In this plot, the azimuthal
current does not show a predominant, consistent pattern. . . . . . . 65

3.14 Plot of the azimuthal current density at 100 ns with Hall physics
included. This image is of a full 3-D iso-density slice (1024 m−3) to
show the liner plasma’s outer surface. In this plot, the azimuthal
current shows a regular helical pattern. . . . . . . . . . . . . . . . . 66

3.15 Plot from a simulation including Hall MHD of the liner plasma at an
iso-density surface of 1023 m−3 with magnetic field traced in blue and
current density traced in red at 100 ns. The current is helical and
generally force-free due to effects from the Hall term. Note also that
the current traces have a switch-back like feature which is due to the
current vortices created by the Hall instability. . . . . . . . . . . . . 68

3.16 Plot from an MHD simulation that does not include Hall physics of
the liner plasma at an iso-density surface of 1023 m−3 with magnetic
field traced in blue and current density traced in red at 100 ns. The
current does show some force free behavior at this time step, but
note that the magnetic field is less helical compared with the HMHD
simulation at the same time step. Also, the current traces lack the
switch-back feature because the Hall instability is not present. . . . 69

xi



A.1 Plot of the azimuthal perturbation amplitude growth rate for a sim-
ulation with grid resolution of 125 µm3. The amplitude was taken
by an axial line-out through the coronal plasma subject to the Hall
interchange instability. The growth rate found from this analysis
compares very closely to the growth rate predicted from theory (Eq.
1.36). The error bars are determined from one standard deviation in
the perturbation amplitude. . . . . . . . . . . . . . . . . . . . . . . 82

A.2 Plot of the azimuthal perturbation amplitude growth rate for a sim-
ulation with grid resolution of 62.5 µm3. The amplitude was taken
by an axial line-out through the coronal plasma subject to the Hall
interchange instability. The growth rate found from this analysis
compares very closely to the growth rate predicted from theory (Eq.
1.36). The error bars are determined from one standard deviation in
the perturbation amplitude. This plot was from a higher resolution
simulation in which the instability structures began forming earlier
by about 5-10 ns as compared with the lower resolution simulation
presented in Fig. A.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.3 Plot of the azimuthal perturbation amplitude growth rate from a
simulation with grid resolution of ∼83 µm3. The amplitude was taken
by an axial line-out through the coronal plasma subject to the Hall
interchange instability. The growth rate found from this analysis
compares very closely to the growth rate predicted from theory (Eq.
1.36). The error bars are determined from one standard deviation
in the perturbation amplitude. This plot was from an intermediate
resolution simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xii



ABSTRACT

Presented in this dissertation is a new Hall physics driven mechanism for describing

the seeding and formation of helical instability structures in axially premagnetized

thin-foil liner z-pinch implosions driven by the 1-MA, 100-ns MAIZE pulsed power

generator at the University of Michigan. This mechanism involves several effects

within a low-density coronal plasma layer around the thin-foil liner that forms when

the driving current pulse is applied. This low-density coronal layer is then subject to

Hall physics, specifically a Hall interchange instability, which leads to several effects

including current advection, current vortices, magnetic field advection, axial flux

amplification, and other phenomena that all contribute to a helical seeding of the

magneto-Rayleigh-Taylor instability (MRTI). These Hall physics effects are studied

numerically using the 3D Hall magnetohydrodynamics code, PERSEUS [C.E. Seyler

and M.R. Martin, Phys. Plasmas 18, 012703 (2011)]. This study has important

implications for the magnetized liner inertial fusion (MagLIF) program at Sandia

National Laboratories, where similar helical instability structures have been observed

in axially premagnetized thick-walled liner implosions on the 18–30 MA Z facility.

This dissertation also used PERSEUS to explore the late time effects of the on-

axis support rod used to hold the thin-foil liners upright in the MAIZE facility as well

as make a comparison of MRTI behavior between simulation and experiment. The

simulation results [J.M. Woolstrum, et. al., Phys. Plasmas 27, 092705 (2020)] show

that by limiting the maximum implosion convergence obtainable, the on-axis support

rod plays a key role in preserving the integrity of the helical MRTI structures beyond

the implosion phase, into the stagnation and explosion phases of the experiments

xiii



(as observed on MAIZE [D.A. Yager-Elorriaga, et. al., Phys. Plasmas 25, 056307

(2018)]). The simulation results also show that if the support rod were removed, the

morphology of the stagnation column during the explosion phase would be determined

by the morphology of the precursor plasma column that establishes itself on axis prior

to the arrival of the bulk of the imploding liner material.

xiv



CHAPTER I

Introduction

1.1 A Brief Introduction to Z-Pinch Liner Implosions

Z-pinches have been studied extensively as a platform for Inertial Confinement

Fusion (ICF), specifically as part of the Magnetized Liner Inertial Fusion (MagLIF)

[1, 2] efforts on the 100-ns, 20-MA Z machine at Sandia National Laboratories [3].

MagLIF makes use of cylindrical metal tubes (“liners”) that are imploded using the

strong electrical currents produced by the Z machine. These currents are directed

axially along the liner’s outer surface. This creates a J×B force density that drives

the implosion radially inward [4]. These liners, which have an initial radius of about 3

mm, a wall thickness of about 0.5 mm, and a height of about 10 mm, are unstable to

the acceleration-driven Magneto-Rayleigh-Taylor (MRT) Instability (MRTI) [5–23],

and to magnetic-compression-driven instabilities such as the m = 0 “sausage mode”,

the m = 1 “kink mode”, and general m ≥ 1 helical modes, where m is the azimuthal

mode number that also represents the number of intertwined helices in the instability

structure [14, 19, 21, 23]. These are fast-growing instabilities that are detrimental to

implosion uniformity and thus to efforts in magnetically driven ICF [1,9, 11,13–16].

In MagLIF, both the fuel and the metallic liner surrounding the fuel are premag-

netized with an axial magnetic field Bz to limit thermal conduction losses from the

hot fuel to the cold liner. Figure 1.1 shows the three stages of MagLIF (magnetiza-

1



Figure 1.1: (a) Simulation of a MagLIF liner imploding showing the three stages of
the concept: premagnetization, laser preheat, and compression. (b) Time-
integrated x-ray self-emission of the stagnation column. Images courtesy
of Ref. [24].

tion, laser preheat, and compression) as well as a time-integrated x-ray self-emission

image of the stagnation column [24]. From penetrating radiography experiments on

the Z-machine, the combination of the premagnetizing Bz field with the implosion-

driving Bθ field was found to result in helical instability structures with m ≈ 6 [14].

Furthermore, when Bz = 0, these helical modes are absent, and the instability struc-

tures becomes azimuthally correlated [13, 15]. The development of the helical modes

for Bz 6= 0 was surprising because Bθ was expected to quickly dominate over Bz, since

Bθ grows rapidly as the current on Z surges to ∼20 MA, while Bz was expected to

stay roughly constant, at its initial value of about 10 T. As the fastest growing modes

of MRTI satisfy k ·B = 0, seeing helical modes suggests that Bz was large enough to

make Bz/Bθ significant. Additionally, at the time of the original experiments with

Bz 6= 0, computer simulations had not predicted the formation of helical instability

structures.

To study metal liner implosion instabilities on a university-scale pulsed power

machine (∼1 MA in ∼100 ns) requires significantly less mass in the liner. Because of

2



Figure 1.2: Support rod structure needed to handle ultrathin foils during installation
and vacuum pump down on MAIZE. The effects of this structure are
explored in Chapter II, where it is shown that the support rod plays a
key role in the late time morphology of the instability structures.

this, university-scale thin-foil liners are constructed by wrapping an ultrathin sheet of

metal foil (e.g., 400-nm-thick aluminum) around a dumbbell-shaped support structure

(see Figure 1.2). The supported thin-foil liner is then installed between the anode and

cathode of a pulsed power machine. Thin-foil liners of this type have been used in

experiments on the MAIZE facility at the University of Michigan and on the COBRA

facility at Cornell University [19, 21, 22, 25, 26]. The use of thin-foil liners on MAIZE

and COBRA has enabled the study of helical instability structures like those seen in

MagLIF experiments on the Z facility. Note that helical MRTI has also been observed

in axially premagnetized gas-puff z-pinch implosions [18].

The origin of helical instabilities in axially premagnetized liner implosions is a

topic of ongoing research within the community and has several proposed explana-

tions ranging from low-density power-feed plasma being swept in from large radius

and compressing the pre-imposed axial magnetic field up against the liner’s outer

3



Figure 1.3: (a) Penetrating x-ray radiograph from Ref. [16], showing the helical na-
ture of MRTI in an axially premagnetized MagLIF liner implosion exper-
iment on the Z facility at Sandia National Laboratories. (b) Visible-light
self-emission image showing helical instability structures from an axially
premagnetized thin-foil liner implosion on the 1-MA MAIZE LTD at the
University of Michigan, from Ref. [21]. (c) Image from PERSEUS show-
ing a simulated axially premagnetized thin-foil liner implosion with helical
MRTI without the need for artificial helical seeding.

surface, [20, 27] to electrothermal instability (ETI) effects [14, 17, 26, 28]. In Figure

1.3, three images are shown with helical MRTI. In Fig. 1.3(a), an x-ray radiograph

is presented, showing some of the first reported helical MRTI structures observed in

an axially premagnetized MagLIF experiment on the Z-machine [16]. In Fig. 1.3(b),

a time-gated, visible-light, self-emission image from an axially premagnetized thin-

foil liner experiment on MAIZE is presented [21]. In Fig. 1.3(c), an image from a

3-D PERSEUS simulation of an axially premagnetized thin-foil liner experiment is

presented. It is important to note that there is no helical perturbation prescribed in

PERSEUS to produce the helical MRTI; instead, a random density perturbation is

seeded throughout the liner plasma, and yet helical MRTI still develops due to the

pre-imposed Bz field. The simulation results shown in this dissertation make use of

PERSEUS which was developed at Cornell University by Martin and Seyler [29]. The

code is discussed in depth throughout this dissertation.

This dissertation presents a new explanation for the origin of helical instabilities

4



in axially premagnetized thin-foil z-pinches implosions. This explanation involves

magnetic-field-aligned plasma effects due to a Hall Instability in the low-density coro-

nal plasma immediately surrounding the dense liner. This new seeding mechanism

arose from the following considerations. First, it has been found experimentally that

very little plasma forms in the power feeds of university-scale (1-MA) pulsed power

machines (without doing something very deliberate to generate plasma) [30]. Nev-

ertheless, helical MRTI develops in axially premagnetized liner experiments at the

1-MA level [21]. Because of this, low-density power-feed plasmas are not included

at large radius in the simulations of these experiments at the 1-MA level. Thus,

significant compression of the pre-imposed axial field does not occur in our simula-

tions, yet helical instabilities still develop as long as Hall physics is included in the

simulations. This is in contrast to previous simulation studies also with Hall physics

included, where MagLIF liner implosions on the much larger 20-MA Z facility were

simulated, and power-feed plasmas were found to compress the pre-imposed axial

magnetic field to significant levels on the liner’s outer surface, making Bz comparable

to the implosion-driving Bθ at the liner’s outer surface [20]. Second, the simulations

presented herein do not account for the initial solid-metal state of the thin-foil liner,

and thus solid-metal ETI effects cannot be responsible for the helical instabilities

observed in our simulations.

In recent experimental work [31, 32], a coronal plasma layer has been found to

form around current-carrying thin-foils due to surface contaminant blow-off and out-

gassing. In the Z-machine, low-density plasma is generated from out-gassing of not

only the liner, but also the electrode surfaces due to the intense currents. In low-

density plasma, a Hall interchange instability can develop, leading to several effects,

including strongly force-free electron currents, axial magnetic field amplification, cur-

rent advection, and bunching of both magnetic field lines and current density channels.

To see an example of the effect of this instability on azimuthal current see Figure 1.4,
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Figure 1.4: Helical perturbation in the azimuthal component of the current density,
plotted on an iso-density surface (1024 m−3) at 75 ns. This highlights one
of the perturbation effects of the Hall interchange instability, which leads
to helical formations in the current on the liner plasma outer surface.

where an iso-density of 1 × 1024 m−3 is shown with the azimuthal current plotted

to show the strong helical patterning. Such dynamics can seed helical MRTI along

the liner’s outer surface and may cause other effects that have yet to be explored at

Z-machine parameters. This form of the Hall interchange instability has been studied

theoretically in Refs. [33–35] through analytic and computational methods. Other

forms of Hall instabilities have been studied in Refs. [36–40].

1.2 PERSEUS: Magnetohydrodynamics and Hall physics

PERSEUS is an extended-magnetohydrodynamics (XMHD) code, which includes

Hall physics (HMHD). PERSEUS was developed by Martin and Seyler [29] to explore

high energy density physics with a new approach that allows the code to incorporate

Hall physics and a large range of densities, covering over 9 orders of magnitude. This

section will discuss the specifics of the code and how PERSEUS incorporates Hall
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physics. The basic model given by:

∂ρ

∂t
+∇ · (ρu) = 0 (1.1)

∂(ρu)

∂t
+∇ · (ρuu + Ip) = J×B (1.2)

∂tε+∇ · [u(ε+ p)] = J · E (1.3)

∂B

∂t
+∇× E = 0 (1.4)

∂E

∂t
= c2(∇×B)− 1

ε0
J (1.5)

∂J

∂t
= −∇ · (uJ + Ju− 1

ne
JJ− e

me

IP ) +
ne2

me

[E + u×B− 1

ne
J×B− ηJ], (1.6)

where n = ρZ/(mi) is the electron density, P is the total scalar pressure, and

Pe = ZP/(Z + 1). These are solved using a combination implicit-explicit algorithm

that makes use of a relaxation scheme to include low frequency Hall effects while

maintaining timesteps comparable to MHD. Note the Hall term is the second to last

term on the RHS of Equation 1.6.

1.2.1 Relaxation Model

A relaxation model is a useful way to recast a conservative hyperbolic system with

a source term into a new system of equations that may be easier to solve numerically.

These equations “relax” back to the original equation if the relaxation term, ε, ap-

proaches zero (ε −→ 0). To show this, consider the following simple one-dimensional

example of a relaxation system:

ut + F (u)x =
1

ε
S(u) (1.7)

where u is a vector of variables, F (u) is a vector of fluxes of u, and S(u) is a stiff

source term, meaning it must be handled over small time steps, as indicated by the

1
ε

term. As ε −→ 0, the equation relaxes to a solution with no source term since
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S(u) must go to zero or the RHS would become infinitely large. Note that u is still

time dependent, but S(u) = 0 constrains the dynamics, and a proper solution to the

system will correctly yield the dynamics of u and the equilibrium relaxation solution

of S(u) = 0.

Any conservative hyperbolic system with source terms can be replaced by a syn-

thetic relaxation system that will yield the original set of equations as the relaxation

term becomes very large (i.e., ε −→ 0). A conservative equation is one in which the

property being modeled is conserved, such as a continuity equation for mass, for ex-

ample. When the relaxation term (1
ε
) becomes very large, it forces the source term

to go to zero to stop that term from approaching infinity. This eliminates the source

term and the system reverts to the relaxed form, which is the original system. For

example, consider a 1-D system with the following hyperbolic equation:

ut + F (u)x = 0. (1.8)

In the relaxation form, this is written as

ut + vx = 0 (1.9)

vt +H(v)x = −1

ε
[v − F (u)]. (1.10)

Therefore, as ε −→ 0, the bracketed term on the RHS of Eq. 1.10 (the source term)

must go to zero. This means that v = F (u) and the original system of Eq. 1.8 is

recovered. Note that in the relaxation form, the vector of variables ut is related to

vx by Eq. 1.9, and H(u) becomes the vector of fluxes, while F (u) becomes part of

the source term. The reason for considering using this type of system is that it can

lead to numerical methods that are much easier to solve relative to the ones needed

to solve the original hyperbolic system.
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1.2.1.1 Relaxation Model and the Generalized Ohm’s Law

When the frequency, ω, for the phenomenon of interest is much less than the

characteristic electron plasma and electron cyclotron frequencies (ω � ωpe,Ωe), the

generalized Ohm’s law becomes a natural relaxation model, with the relaxation terms

becoming the large terms on the right-hand sides of Equations 1.5 and 1.6. The large

terms are determined by considering the ratio of the speed of light to a characteristic

speed of the simulation. For example, terms with a c2 coefficient are large, meaning

that both terms on the RHS of equation 1.5 are retained. In addition, when consid-

ering the ratio of the characteristic spatial scale to the electron inertial length, the

terms with a 1/me coefficient are retained from equation 1.6, which leads to equation

1.12. This leaves the following relaxation equilibrium:

∇×B = µ0J (1.11)

E + u×B− 1

ne
J×B− ηJ = − 1

ne
∇Pe. (1.12)

1.2.2 Vacuum Resistivity

In low-density regions in MHD, where there are not enough charge carriers to

conduct current from the resistive Ohm’s Law, issues can arise. This is due to the

scalar nature of resistivity in high temperature plasmas being essentially independent

of density, allowing for the current in low-density regions to be much higher than

physically allowable (e.g., in reality, charge carriers cannot exceed the speed of light).

Extended MHD with the Hall term gives rise to a tensor conductivity that is magnetic

field dependent, which can greatly limit cross-field current. Also, the electron inertial

terms inhibit instantaneous rise in parallel current until the electron-ion collisions

limit the current flow. For resistive MHD, a model for the scalar resistivity that
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depends on density and is very large in low density is often used:

η = ηs + η0
nfloor

n
(1.13)

This simple model modifies Spitzer resistivity (ηs) with a vacuum resistivity (η0).

In PERSEUS, when XMHD or HMHD is used, the unmodified Spitzer resistivity is

used, as the Hall and electron inertia terms are sufficient to restrict current in low

density/vacuum regions. Note that the relaxation method used in PERSEUS for

resistive MHD allows for the choice of an arbitrarily high vacuum resistivity without

timestep concerns and without the need to track plasma/vacuum boundaries. This

means that when PERSEUS is run using only resistive MHD (as opposed to using

Hall MHD), the resistivity for low density plasma is properly handled and the choice

for the vacuum resistivity constant (η0) is relatively unimportant as long as it is large

enough. Seyler and Martin [29] compared this resistive MHD model with the HMHD

model and found good agreement. In XMHD or HMHD, the conductivity tensor,

¯̄σ, has components that are Pederson, Hall, and parallel conductivities derived from

setting the right-hand side of Eq. 1.12 to zero. This results in:

J = ¯̄σ · (E + u×B). (1.14)

Because this is a consequence of the Hall term, it is implicitly included in PERSEUS

when using the XMHD model. The conductivity tensor and its components are

discussed in detail in Ref. [20]. An important outcome of this conductivity tensor

is that the parallel component is the most conducting term. This leads to the Hall

term driving current along the magnetic field, which in turn can lead to a force free

configuration of the current and magnetic field.
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1.2.2.1 The Algorithm

Early versions of PERSEUS made use of an implicit-explicit MUSCL scheme

(Monotone Upwind Scheme for Conservative Laws), which is a scheme developed

by van Leer and is capable of handling systems with shocks and steep gradients. The

equations are discretized using a finite volume approach that uses Local Lax-Friedrichs

methods for flux calculations. This flux method is as follows:

Fi+ 1
2

=
F+
i+ 1

2

− F−
i+ 1

2

2
− c2

s(ni+1 − ni), (1.15)

where cs is a characteristic speed such as the sound speed, and the second term on

the right-hand side is a diffusive/stabilizing term. This locally solves for character-

istic speed instead of employing an expensive global solve scheme. If the electron

inertial term (λ2
e = me/n0e

2µ0), which is part of the relaxation term within the al-

gorithm of PERSEUS, is under resolved (meaning it is smaller than the resolution

of the simulation grid), the relaxation solution (Equation 1.11) is forced; conversely

when the electron inertial scale is resolved, the model correctly solves for the current

density. This is due to the electron inertial term being part of the relaxation term

(see Ref. [29]). The time advance is implicit with respect to the Hall, resistive, and

electron inertial terms. Because the Hall terms do not contain spatial derivatives, the

algorithm only requires a direct solution of a 3×3 matrix at each cell. The flux terms

and source terms in Equations 1.5 and 1.6 are treated explicitly.

For the simulations presented specifically in Chapter III, the version of PERSEUS

used made use of a fifth order central finite volume method with a positivity preserving

limiter that keeps the density and pressure above the floor [41]. This method allowed

for a considerable accuracy improvement as compared with the third order method

used in the simulations of Chapter II. Both methods are capable of handling & 9

orders of magnitude density variation, from solid density down to the floor. The fifth
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order method allowed for exploration of the seeding mechanism of helical instabilities

which will be discussed in detail in Chapter III. In this method, the Hall-MHD Ohms

law in Eq. (1.12) is solved using the relaxation method described in Section 1.2.1.1

and Reference [29]. The divergence constraint (∇ ·B = 0) is maintained using either

divergence cleaning [42] or a constrained transport central difference method [43].

1.3 Plasma Instabilities

Z-pinches are an inherently unstable system and are subject to several different

types of instabilities as discussed previously. The work presented in this dissertation

focuses on two instabilities: magneto-Rayleigh-Taylor instabilities (MRTI) and Hall

instabilities (HI), and this section will cover a theoretical discussion of these instabil-

ities. First, MRTI is briefly discussed as it is perhaps the most ubiquitous instability

in the field and has received the most study. Next, a discussion of the Hall instabil-

ity is presented. Chapter III discusses how this Hall instability can seed MRTI and

provide a new explanation for the helical instability structures observed in axially

premagnetized z-pinches, which is still a topic of much debate within the field.

1.3.1 Magneto-Rayleigh-Taylor Instability

The Magneto-Rayleigh-Taylor Instability (MRTI) is very similar to the pure hy-

drodynamic Rayleigh-Taylor instability, where a lower density fluid is accelerated

into a higher density fluid. In the pure hydrodynamic case, the Atwood number,

A = (ρheavy − ρlight)/(ρheavy + ρlight), is a dimensionless number that contributes to

the growth rate of the Rayleigh-Taylor instability. In a magnetized plasma context,

the density of the light fluid can be zero, and thus the Atwood number can be unity.

This is because in MRTI, the lower density fluid can be fully (or partially) replaced

by the magnetic field. In the analysis here, the magnetic field is an azimuthal field,

Bθ, driven by the fast current pulse from the pulsed power machine (i.e., this is a
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typical z-pinch configuration). This creates a magnetic field curvature, which along

with J × B forces, acts like an acceleration term that drives the instability growth.

If it is assumed that the magnetofluid is incompressible, then the linearized equation

of motion becomes:

ρ0
∂v1

∂t
= −∇P̄1 +

B0 · ∇B1 + B1 · ∇B0

µ0

− ρ1gŷ, (1.16)

where P̄1 = P1+ B0·B1

µ0
. The growth rate can be derived as shown in Bellan’s textbook,

Fundamentals of Plasma Physics [44], to be:

γ2 ∼ gρ−1
0

ρ0

∂t
− (k ·B0)2

µ0ρ0

. (1.17)

This MHD version of the Rayleigh-Taylor instability is also known as the Kruskal-

Schwarzschild instability. Note that the k0 = 0 geometry is the fastest growing mode

for this instability. In other words, the magnetic field can suppress the instability

and slow its growth (if not stop it all together given a strong enough field), but this

only occurs when the instability wave vector k is not aligned with B0. As discussed

previously, axially premagnetized experiments such as MagLIF have an initial axial

field, Bz ∼7 Tesla, which is quickly dominated by the driving azimuthal field Bθ

established by the 20-MA, 100-ns rise-time current pulse. This would imply that the

fastest growing modes of the MRTI would be modes with k = kzẑ (i.e., azimuthally

symmetric modes with m = 0, where m is the azimuthal mode number). However, as

discussed earlier, this is not the case—the MRTI structures are observed to be helical,

with m ≥ 1 and k = kθθ̂ + kzẑ.

1.3.2 Hall-MHD Model and Reduced Model

In this section, a reduced Hall-MHD model is used to derive a local dispersion

relation for the Hall interchange instability. This type of analysis is explored in a
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similar context in References [33,34]. PERSEUS includes Hall physics by inclusion of

the Hall term in the generalized Ohm’s law (GOL), which is the 3rd term on the LHS

of Equation 1.23 below. The Hall term is necessary to observe the effects discussed

in this dissertation. The Hall-MHD model that will be used for this analysis is as

follows:

∂tn+∇ · (nu) = 0 (1.18)

∂t(ρu) +∇ · (ρuu + p) = J×B (1.19)

∂tε+∇ · [u(ε+ p)] = J · E (1.20)

∂tB = −∇× E (1.21)

∇×B = µ0J (1.22)

E + u×B− 1

ne
J×B− ηJ = 0, (1.23)

where ε = 1
2
ρu2 + p/(γ − 1) is the internal energy density, and the average ionization

is assumed to be one (Z = 1). Equations 1.18–1.20 are the continuity equations for

mass, momentum, and energy respectively, while Eqs. 1.21 and 1.22 are Faraday’s

and Ampère’s law. Equation 1.23 is the generalized Ohm’s law with the Hall term

included. The variables u, J, E, B, ρ, n, p are velocity, current, electric field, magnetic

field, mass density, number density, and pressure.

The reduced description of these equations is an asymptotic analysis in which the

constant equilibrium axial field B0 is much larger than either the perturbed axial field

or the transverse field, i.e., B0 � Bz and B0 � B⊥. We take ∂z � ∇⊥, meaning

that the perturbations in the axial direction are much smaller than the perturbations

in the perpendicular field, which is consistent with the previous assumption, so that

B0∂z ∼ B⊥ · ∇⊥. The mass velocity is taken to be small but not zero. The pressure

perturbations are assumed to be zero, as is the plasma resistivity. The most familiar

application of this scaling leads to the so-called reduced MHD equations, sometimes
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called the Strauss equations [45]. The application here is to the Hall-MHD equations

in the frequency range between the ion and electron cyclotron frequencies. The high-

frequency reduced Hall-MHD model, applicable to plasma motion faster than the ion

gyrofrequency and slower than the electron gyrofrequency, consists of the following

equations [33,34]:

∂tφ =
1

n0eµ0

[(ẑ ×∇ψ) · ∇∇2
⊥ψ +B0∂z∇2

⊥ψ +B0∇2
⊥χ+

B0

n0

(ẑ ×∇n) · ∇φ] (1.24)

∂tψ =
1

n0eµ0

[(ẑ ×∇ψ) · ∇φ+B0∂zφ] (1.25)

∂tχ = − B0

ρ0µ0

φ (1.26)

∂tn+ n0∇2
⊥χ = 0, (1.27)

where φ = δBz is the perturbed axial magnetic field, ψ is the magnetic flux function,

from which B⊥ = ẑ×∇ψ, χ is the velocity potential. For high frequencies the velocity

is completely compressible such that u⊥ = ∇⊥χ. Equations 1.24 and 1.25 are derived

from Faraday’s law using the Hall-MHD Ohm’s law (Equation 1.23). Equation 1.26

is the linearized momentum equation for purely compressible modes, and Eq. 1.27

is the continuity equation for purely compressible motion. The reduced equations

are adequate for analyzing the stability about an equilibrium satisfying the stated

approximations.

These equations can be linearized about a slab equilibrium with B0z(x) = B0 +

φ0(x), n0(x) (i.e., a density profile in x), and B0y(x) = ψ′0(x), where the prime means

differentiation with respect to the argument. Additionally, a space-time dependence

that is consistent with local analysis can be assumed for the equilibrium and pertur-

bation fields (the terms with δ in the equations below) such that the perturbation
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fields do not have any dependence on x:

Bz(x, y, z, t) = B0 + φ0(x) + δφ exp[i(kyy + kzz − ωt)] (1.28)

B⊥(x, y, z, t) = B0y(x) + δψ exp[i(kyy + kzz − ωt)] (1.29)

χ(x, y, z, t) = δχ exp[i(kyy + kzz − ωt)] (1.30)

n(x, y, z, t) = n0(x) + δn exp[i(kyy + kzz − ωt)]. (1.31)

The linearized form of this reduced model is then:

−iωδφ =
1

n0eµ0

[−ik3
yδψψ

′
0(x)− ikzk2

yB0δψ + ψ′′′0

+B0(−k2
y)δχ+

B0

n0

(n′0(x)ikyδφ− ikyφ′0(x)δn]

(1.32)

− iωδψ =
1

n0eµ0

[ikyδψφ
′
0(x) + ikyδφψ

′
0(x) + ikzB0δφ] (1.33)

− iωδχ =
−B0

ρ0µ0

δφ (1.34)

− iωδn+ n0(−k2
y)δχ = 0. (1.35)

Combining and solving Eqs. 1.32–1.35 gives the local dispersion relation:

ω2[(ω − ωH)ω − ω0(ω − ωH)− k2σ2]− k2v2
A(ω2 − ω2

H) = 0, (1.36)

where v2
A = B2

0/ρ0µ0 (vA is the Alfvén speed), k = ky, ω0 = k
B0n′

0

n2
0eµ0

, ωH = k
φ′0

n0eµ0
,

σ ≡ [kB0y(x)+κB0]/(n0eµ0), and κ = kz. This gives unstable solutions, requiring ωH

to be non-zero. For relevant plasma parameters (e.g., B0 = 2 T, n0 = 6×1020 m−3, and

k = 0.4 mm−1), the dispersion relation in Eq. 1.36 gives growth rates of approximately

0.12 ns−1. This growth rate will be compared to simulation results in Chapter III.

Note, this instability requires a gradient in the axial magnetic field. The density

gradient can work to either make the growth rate larger or smaller depending on

whether the density gradient is the same or opposite sign to the magnetic field at the
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same local radius. This means that at early times, the maximal growth rate occurs

where the density falls off rapidly (n′0 < 0) and the axial magnetic field gradient has

B′z > 0.
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CHAPTER II

Extended Magnetohydrodynamics Simulations of

Thin-Foil Z-Pinch Implosions with Comparison to

Experiments

In this chapter, simulations of thin-foil liner z-pinches are shown that explore

several effects related to the support rod structure that is necessary to hold the thin-

foil liner upright in MAIZE’s anode-cathode gap prior to the implosion. The radius

of this support rod sets a limit on the maximum convergence ratio achievable for the

implosion. In recent experiments with a support rod and a pre-imposed axial magnetic

field, helical instability structures in the imploding foil plasma were found to persist

as the foil plasma stagnated on the rod and subsequently expanded away from the

rod [21]. The PERSEUS simulation results presented in this dissertation suggest that

it is the support rod which is responsible for the helical structures persisting beyond

stagnation. Furthermore, the simulations show that as the radius of the support rod

decreases (i.e., as the convergence ratio increases), the integrity and persistence of

the helical modes diminish. In the limit with no support rod, the simulations show

that the structure of the final stagnation column is governed by the structure of the

central precursor plasma column.
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2.1 Thin-Foil Z-Pinches

To study metal liner implosion instabilities on a university-scale pulsed power

machine (∼1 MA in 100 ns) requires a significant reduction in liner wall thickness

relative to MagLIF liners on Z. Thinner liner walls are needed to reduce the overall

liner mass while preserving the initial liner radius of 3 mm. Thin liner walls can be

achieved by wrapping a sheet of thin metal foil (e.g., 400-nm-thick aluminum) into the

shape of a cylinder. Thin-foil liners of this type have been used in experiments on the

MAIZE facility at the University of Michigan [19,25,46], and the COBRA facility at

Cornell University [22,47]. Because the foil liners are so thin, they are also incredibly

fragile and require a support rod structure (Figure 1.2) to ensure their structural

integrity when handling (e.g., during liner assembly and installation into the MAIZE

anode-cathode structure) as well as during vacuum pump-down on MAIZE, where

the gap spacing of the anode-cathode structure can decrease by ∼1 mm in the axial

direction of the liner as the MAIZE facility’s mechanical deflection of the top vacuum

lid due to the 1 atm pressure differential.

The development of an imploding thin-foil liner platform on MAIZE enabled sub-

sequent experimental studies on liner implosion dynamics. These studies included

experiments with axially premagnetized liners, where discrete helical modes were

observed [19, 21, 25]. In thin-walled foil liner experiments [21] and in thick-walled

MagLIF liner experiments [14], the helical pitch angle φ and the azimuthal mode

number m of the helical instability structures were found to be governed by the

strength of the initial applied Bz field. Additionally, the pitch angle in both the thin

and thick-walled cases can be described by the relationship φ ≈ m/(kR), where k is

the axial wave number, and R is the imploding liner radius at the time of the image,

while the helical pitch p = 2πm/k was found to be approximately constant in both

the thin- and thick-walled cases for the implosion times observed [14], [21]. (Note that

the helical pitch is the axial distance traveled along a helix when advancing by 2π
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radians in the azimuthal direction; the pitch is not the pitch angle.) The similarities

observed between the two cases are remarkable given that thin-foil liners are much

more susceptible to instability feedthrough than thick-walled MagLIF liners. For ex-

ample, a liner’s robustness to instability feedthrough is often characterized in terms of

the liner’s initial aspect ratio AR0 ≡ Router,0/∆R0 , where Router,0 is the initial radius

of the liner’s outer surface, and AR0 is the liner’s initial wall thickness. Smaller AR0

liners are expected to be more robust than higher AR0 liners, while higher AR0 liners

can obtain higher implosion velocities. In MagLIF, the tradeoff between implosion

velocity and liner stability is expected to result in optimum fusion performance with

∆R0 ∼ 6 liners, which have been studied extensively on Z [13–15, 17]. By contrast,

the thin-foil liners studied in Refs. [19, 21, 25] and [26], have ∆R0 ∼ 6000. Another

important difference between the thin and thick-walled cases is the fact that the wall

thickness in a MagLIF liner is usually greater than the electrical skin depth of the

liner material, whereas in thin-foil liner experiments, the resistive skin depth is much

greater than the liner wall thickness. This causes thin-foil liners to explode (expand-

ing the wall thickness) very early in the current pulse, due to the stresses caused by

intense ohmic heating. By contrast, MagLIF liner walls are usually compressed by

the driving magnetic pressure gradient, sometimes leading to shock formation within

the thick liner wall [15]. For the thin-foil liner experiments, the early expansion of the

foil thickness prior to the start of the implosion effectively reduces the initial aspect

ratio to ∆R0,effective ∼ 15, which could help explain some of the similarities observed

between initially thin and thick-walled cases.

2.2 Simulations of Previous Experiments Conducted on MAIZE

An overview of the initial 3D PERSEUS simulation geometry and some example

images of the imploding liner plasma are presented in Figure 2.1. As in the experi-

ments, the simulations included a pre-imposed axial magnetic field of 2 T. The liner
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plasma density was mass matched to represent a 400-nm-thick aluminum foil liner

expanded out into a 1 eV cylindrical plasma shell with a wall thickness of 250 microns.

The density perturbation of less than 1% was randomly distributed throughout the

liner plasma. PERSEUS was also modified to read in an experimentally measured

current pulse to drive the implosion (see Figure 2.2) in this chapter. A Spitzer resis-

tivity model was used in these simulations.

A detailed discussion of the grid resolution used can be found in Appendix B.

The PERSEUS implosion trajectory presented in Figure 2.2 was extracted from the

simulation data presented in Figure 2.1. To obtain the PERSEUS radii plotted,

several 1D radial density profiles were acquired from the PERSEUS simulation data

at various axial positions (z) and for various azimuthal directions (θ). The outer edge

of each radial profile was then recorded by considering the steep drop off in density.

The averages of these positions are the PERSEUS radii plotted in Figure 2.2, while

the standard deviations determine the error bars.

At present, PERSEUS only allows for a single material to be modeled. Thus,

to model both the imploding aluminum plasma shell and the plastic support rod,

the support rod was initialized as cold, solid density aluminum with its conductivity

artificially decreased so that it was non-conducting. A momentum mask (which pre-

vented any movement of the rod due to thermal expansion or ablation by artificially

imposing zero momentum at every timestep while active) was also applied to the

rod during the liner implosion phase and then removed at a time just before liner

stagnation. This was done to prevent rod ablation from impacting the inner surface

of the imploding liner. To mimic ionization of the rod’s surface, a thin (2-cell) layer

of low-density plasma was initialized around the rod. This allowed for the flow of

a small amount of current along the rod’s surface. It is difficult to know the exact

behavior of the rod since it has not been explored in experiment, but this approach

is believed to be reasonable and sufficient for the purposes of this study.
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Figure 2.1: Simulation setups and implosion overview. (a,b) Initial setups showing
examples of the electrode geometries and power feeds used, where red
represents solid density aluminum and blue is vacuum. The setup in (a)
includes an axial feed and was driven by a boundary condition at the lower
edge of the image (i.e., at a specified axial position). The setup in (b) used
a simplified electrode geometry and was driven by a boundary condition
at the left and right edges of the image (i.e., at a specified radius). It
was found that including the axial feed was unnecessary and only added
unnecessary volume to the simulation space, reducing the grid resolution;
thus, the setup in (b) was used for most of this chapter. (c)-(h) Example
density slices taken during a representative liner implosion.
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Figure 2.2: Simulated liner implosion trajectories from PERSEUS and from a sim-
plified 1-D thin-shell model, as well as the MAIZE electrical current used
to drive the simulated implosions. The average liner radius plotted for
PERSEUS was found by integrating the liner density in both the axial
(z) and azimuthal (θ) directions. This figure should be contrasted with
Fig. 1b in Ref. [19]. The simplified 1-D thin-shell simulation (sometimes
referred to as a “0-D” model) is shown for reference and demonstrates
that PERSEUS captures early time expansion of the liner and late time
bounce of the liner off of the inner support rod, which can also be seen
in experiment (see Fig. 1b in Ref. [19]).
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In Figure 2.2, the PERSEUS liner trajectory reaches stagnation just after the time

when the current reaches its maximum value. The stagnation phase begins when the

liner begins to decelerate due to plasma pressure building up between the imploding

liner wall and the support rod on axis. During stagnation, the liner trajectory appears

to undulate. This is due to shocks reverberating in the plasma between the imploding

liner wall and the support structure on axis. After stagnation, the liner trajectory

enters the explosion phase. In Figure 2.2, the duration of the implosion phase is

approximately 125 ns, and the duration of the stagnation phase is approximately 50

ns. These durations are in good agreement with those observed experimentally in

Ref. [19], Fig 1 (b).

In our PERSEUS simulations, and in the experiments of Refs. [19, 21, 25, 46], the

on-axis support rod sets a maximum possible convergence ratio of Cr,max ≡ r(0)
rrod

=

5.15. However, this Cr,max is never achieved in the simulations or observed in the

experiments (note that the experiments only observed the outer edge of the implod-

ing liner plasma). At least for the simulations (and possibly for the experiments),

this is due to an appreciable amount of low-density plasma being advected to the

support rod ahead of the bulk of the imploding liner material. This advected “pre-

cursor” plasma accumulates along the rod while also carrying an appreciable amount

of current (∼30%). This precursor plasma, with its associated plasma pressure and

magnetic pressure, is compressed by the imploding liner material, which limits the

convergence ratio to something less than Cr,max.

Overall, the simulated trajectory in Figure 2.2 is very similar to what was found

in the experiments (again see Fig. 1(b) in Ref. [19]). However, one notable difference

is that the liner begins imploding earlier in the simulated case (both PEREUS and

the simple thin-shell model). In experiments, the liner began the implosion phase

around 125 ns into the current pulse, while in PERSEUS, the liner begins the implo-

sion phase around 75 ns into the current pulse. This results in the PERSEUS liner
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reaching stagnation earlier than in the experimental case. This discrepancy could be

due to the use of a Spitzer-Harm conductivity model, which lacks the ability to model

the precipitous drop in conductivity that occurs when the solid metal foil transitions

to a liquid-vapor state. By artificially varying the conductivity values, the implosion

timings were found to vary by 10s of nanoseconds, where higher conductivity values

lead to earlier implosion times, because larger gradients in the implosion-driving mag-

netic field pressure can be supported. The conductivity values were varied through

a weighting factor that determines the relative weight of a fixed conductivity value

versus a value calculated using the coulomb logarithm. From these two values, an

overall conductivity value for each cell is calculated.

Another possible explanation for the discrepancy in the overall implosion times

is that perhaps the current delivered to the load in the experiments was lower than

the measured value. For example, the load current diagnostics in the experiments

of Refs. [19, 21, 25] were B-dot probes located at a radius of 45 cm, which is large

compared to the radius of the liner (3 mm). This means that any current loss oc-

curring between the probe locations and the liner surface would go undetected while

also causing a later-than-expected implosion time, given the measured current trace.

To test this explanation, a simple PERSEUS simulation was run, which showed that

lowering the current by 15% caused the liner to implode ∼25 ns later. Furthermore,

in the experiments of Ref. [19], the peak current varied from shot to shot by up to

20% of the average peak current measured. Meanwhile, our PERSEUS simulations

in this chapter used the current trace from the experiment with the highest peak

current (shot 1172, with a peak current of 680 kA). Thus, the shot-to-shot variations

and the measurement uncertainties could explain much of the differences observed in

the implosion times. Note that efforts are presently underway to improve load current

measurements on MAIZE and thus further address this issue in the future [48]. De-

spite the discrepancy in the start time of the implosion phase, the simulated durations

25



Figure 2.3: Mode merging of instability lobes in simulation. The duration of this
single mode-merging event is approximately 30 ns. Both the duration
and the overall dynamics of this mode-merging event agree well with the
experimental results presented in Fig. 7(b) of Ref. [21].

of the implosion and stagnation phases are in good agreement with experiment.

During the implosion phase, instability structures begin to develop. Considering

the axial mode number (spatial frequency) kz = 2π/λ, where λ is the wavelength of the

instability in the axial direction, the first modes to appear are short-wavelength modes

(high spatial frequency), which cascade to larger wavelength modes throughout the

implosion [13,21]. This cascading process occurs via a series of discrete mode merger

events [21]. The discrete mode merger events observed in the PERSEUS simulations

(see Figure 2.3) appear very similar to those observed in experiments (see Fig. 7(b)

in Ref. [21]). In both the simulation and in the experiment of Ref. [21], the discrete

merging of two instability lobes occurs over a period of approximately 30 ns.

As the instability structures cascade to longer wavelengths, they also grow to larger

amplitudes [13, 21]. In Figure 2.4, the PERSEUS instability amplitude is presented

as a function of normalized distance moved, d̂ ≡ 1 − r(t)/r(0). To obtain these

amplitudes, the edge of the imploding plasma column (at an iso-density surface of

1023 m−3) is tracked and fit with a sum of sine functions (the fitting was done using the

MATLAB “sin8” fitting routine). This resulted in an average instability amplitude

for each time step that was analyzed. The amplitude data were then fit with an

exponential function of the form A = A0 exp(γt), where A0 is determined by the initial

seeding and γ is the growth rate. Since a random density perturbation was used in
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Figure 2.4: PERSEUS instability amplitude as a function of normalized distance
moved, d̂ ≡ 1 − r(t)/r(0). The instability amplitude is subject to the
iso-density surface chosen and becomes difficult to determine as the liner
begins to bounce off of the inner support rod. This is due to the lower ef-
fective resolution as the imploding liner moves through the cartesian grid,
which can make it difficult to determine an accurate instability amplitude.
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these simulations, A0 was not well defined (i.e., this is a perturbation to density rather

than a perturbation to the liner-vacuum interface). Nevertheless, the exponential fits

allow us to determine the growth rates and an effective A0. The simulated growth rate

was 34.5 ± 5.5 µs−1, which was ∼3 times larger than the experimentally measured

values, which typically ranged from 7 to 13 µs−1. However, in this particular case,

the experiments of Ref. [21] were non-imploding in order to investigate magnetic

compression instability development decoupled from the acceleration-driven MRT

instability. Thus, it is not surprising that the overall instability growth rates in the

PERSEUS simulations (which do include MRT contributions) are larger than in the

experiments of Ref. [21]. The uncertainty in the simulated growth rate is largely due

to limitations in spatial resolution. The lack of resolution causes aliasing to occur

(on a Cartesian grid) that influences the measured growth rate at different azimuthal

locations on the liner. This means that the measured growth rate can depend on the

azimuthal viewing angle. The effect of viewing angle is driven by mode merging events

at different azimuths around the liner occurring at different times. In simulations, the

effects of viewing angle can be mitigated by rotating the 3D data such that the chosen

viewing angle for data analysis takes into account the azimuthally asymmetrical mode

merger events. This is not possible in experiment, thus viewing angle effects may play

a more significant role in experiment.

Helical modes were observed in all simulations run with Bz0 6= 0 (see Figure

2.5). To characterize these modes, we used the analysis technique presented by Awe

et al. [14], where the observed helical structures can be fit using the parametric

equations: y(θ) = a ·sin(θ), and z(θ) = p ·θ/2π. Here, a is the radius of the imploding

liner at the time of the image, and p is the pitch of the helix. Note that p remains

approximately constant throughout the implosion, which is consistent with the fact

that axial plasma outflows are not permitted in the experiments or the simulations.

Presented in Figure 2.5(a) is a series of helical lobes highlighted on the surface of the
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Figure 2.5: Iso-density surface images taken at a number density of 6×1018 cm−3 and
a time of 117 ns, showing (a) the highlighted helical instability lobes that
develop on the liner and (b) the corresponding helical line traces used to
identify the effective azimuthal mode number. The origin of these helical
instabilities is being studied and will be presented in depth in III.

liner (an iso-density surface taken at a number density of 6× 1018 cm−3). In Figure

2.5(b), we show the corresponding helical traces from the parametric equations above;

these parametric fits are used to identify the effective azimuthal mode number.

The choice of iso-density surface was made such that the instability structures

were the most pronounced. This typically meant a surface iso-density of 6 × 1018

cm−3. Changing this value by an order of magnitude higher or lower does not affect

the results presented in this Chapter. Note that if the density threshold for the iso-

surface is set too low, then random clumps of low-density plasma begin to obscure

a decent view of the helical structures, while if the density threshold is set too high,

the structures are not present.

The parametric fitting technique is able to trace well-defined helical lobes, but it

does not handle the more complex structures that result from discrete mode merging

events that occur at different azimuths at different times. Nevertheless, this simplified

tracing method is included to capture the general trends of the mode development

and to give a rough idea of the effective azimuthal mode number (i.e., the number of

intertwined helices) which was confirmed by rotating the 3D data. The results from

this analysis for six different times can be seen in Figure 2.6. Late in time, the modes
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Figure 2.6: Effective azimuthal mode number m as a function of time. The mode
numbers were extracted from the simulation data using the helical fitting
technique described by Awe et al. in Ref [14]. This technique uses the
parametric equations given in the text to trace 3D helices onto a 2D
image. The results plotted here indicate that the instability structure
initially consists of many intertwined helices (m ≈ 7), and that these
helices merge into fewer helices throughout the implosion process. The
mode merging ceases upon stagnation (t ≈ 140 ns), with a dominant mode
number of m ≈ 2 (two intertwined helices). These results are consistent
with the experimental results presented in Refs. [25] and [21].
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become less pronounced as the plasma becomes denser and choosing an optimal iso-

density surface becomes more challenging. These traces indicate that the number of

intertwined helices early in time is quite large (m ≈ 7) compared to the final number

at stagnation (m ≈ 2). This analysis also shows that one helical trace can become

very close to another helical trace (see Figure 2.5), which is a consequence of instabil-

ity lobes being in the process of merging (Figure 2.3). Also note that since the helical

modes are almost always in a state of merging, the effective azimuthal mode number

is rarely (if ever) an exact integer value, hence the uncertainties indicated in Figure

2.6. Note that the experimental data of Refs. [19, 21, 25] were acquired using laser

shadowgraphy (with a laser wavelength of 532 nm) and visible self-emission imaging.

A straightforward way to compare the PERSEUS simulation results to the experimen-

tal results would be to use PERSEUS simulation output data to generate synthetic

laser shadowgraphs and self-emission images. However, PERSEUS is presently not

equipped to do this.

2.3 Axial Roll-Up of Instability Structures in Thin-Foil Liner

Simulations

In the simulations of thin-foil liner implosions presented throughout this disserta-

tion, a velocity shear is observed in the axially directed plasma flow near the outer

edge of the low-density plasma. This causes the MRT instability lobes to roll over in

the upwards direction (like breaking waves). This shear is the result of electron flow

in the low-density plasma (< 6× 1022 m−3), which establishes electric and magnetic

fields that drive these roll-up features.

In Figures 2.7 and 2.8, an example is shown of the axial roll-up features. These

images were produced using a number-density iso-surface of 1× 1024 m−3. In Figures

2.7 and 2.8, the plasma on the outer tip of the instability lobe has more upward
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Figure 2.7: Two timesteps from a 3D liner implosion which shows a helical instability
lobe exhibiting axial roll-up characteristics in the liner plasma. This is
driven by radially dependent E×B velocity shear within the plasma.

axial velocity vz than the plasma further inward on the lobe. The velocity shear in

the instability lobes was quantified using the probe locations indicated in Figure 2.8.

The measured axial velocities vz(r) are plotted in Figure 2.9. In Figure 2.8, probes

1, 2, and 3 show a clear velocity shear, where the plasma at larger radii have a larger

vz. This leads to the roll-up features illustrated in Figures 2.7 and 2.8. This is less

pronounced in probe 4, but the trend is still there to a smaller extent.

In Figure 2.10, both electric and magnetic fields are plotted. When evaluating the

E×B drift, it is found that above the lobe, the E×B drift is inward (into the page,

towards the center of the liner on the axis of symmetry), while below the lobe, the

E × B drift is outward. The flow of plasma is complicated and nonuniform during

the implosion of the liner, but these E×B drifts bias that flow and drive the roll-up

features.

In Figures 2.11 and 2.12, the components of E×B are plotted when the current

pulse has reached peak current (at 200 ns) and significant helical MRTI structures

have formed and are beginning to exhibit roll-up features. In Figure 2.11, the radial
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Figure 2.8: Slice from a 3D simulation showing the 4 probe locations used to map the
velocity values vz(r) plotted in Fig. 2.9. This slice view also highlights
the roll-up behavior of the MRT instability lobes.
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Figure 2.9: Graph of upward velocity vz(r), revealing the velocity shear present in the
instability lobes (i.e., the plasma has larger values of vz at larger radii).
These velocity measurements were taken at 117 ns.
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Figure 2.10: Plot of magnetic field vectors (blue) and electric field vectors (red)
around the helical lobe plasma, which leads to E × B drift radially
inward (into the liner/page) above the lobe and outward below the lobe.
This is a contributing feature to instability roll-up. In this figure, r̂ is
into the page and ẑ is the vertical axis.

component of E×B is plotted with red regions showing drift inwards and blue regions

showing little to no radial drift. The inward drift is generally found on the top of

the helical MRT lobes. This contributes to the roll-up feature by forcing the upper

half of the MRT lobes radially inward, while the lower half is not affected by this

drift creating a horizontal shear. While this effect is not as pronounced as the axial

velocity shear it still acts as a contributing factor to the roll-up asymmetry of the

MRTI.

In Figure 2.12, we plot the axial component of E × B on a cross-sectional slice

of the plasma column at ∼150 ns. Here it is seen that there is a radial distribution

of drift velocity, where the outer edges of the plasma column see a notably larger

upward drift velocity. This is not unexpected given the velocities plotted in Figure

2.9. The outermost edge of the plasma column sees a drift velocity that can be up to

an order of magnitude larger than the drift velocities more radially inward. This again
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Figure 2.11: The radial component of E × B. The darker red regions are directed
radially inward more strongly. These regions are generally found on the
top of the MRT instability lobes and contribute to the axially asym-
metric roll-up features by creating a horizontal shear in E × B drift in
addition to the axial velocity shear. Note that the x̂ direction in this
plot is the radial direction and the positive direction is to the right in
this figure.
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Figure 2.12: Axial component of E × B within a cross-sectional slice of the plasma
column. This shows that at the edges of the plasma column, there is
generally a significant increase in upwards E×B drift.
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contributes to the axially asymmetric roll-up feature seen in z-pinches. For example,

similar axial roll-up features have been observed along the outer edges of ablating

wires in wire-array z-pinch experiments [49, 50]. Due to the electrons carrying most

of the current, their motion also dictates the electric field geometry which includes a

significant radial component directed inward. This combines with the magnetic field

such that the E×B drift motion is as shown in Figures 2.11 and 2.12.

2.4 Support Rod Diameter Effects on Helical Mode Persis-

tence

In past experiments where a z-pinch driven thin-foil liner implosion was pre-

magnetized with a uniform externally applied Bz field, it had been observed that

helical modes developed during the implosion phase and persisted into the explosion

phase [21]. These experiments included an on-axis support rod (Figures 1.2 and 2.1).

Initial modeling attempts for this dissertation work did not include this on-axis sup-

port rod, and the persistence of helical modes was not observed during stagnation or

during the subsequent explosion phase. This led to the hypothesis that the persistence

of the helical modes into the explosion phase was caused by the support rod limiting

the convergence ratio of the implosion. This hypothesis was then tested by including

a support rod in the simulations. The results show that, indeed, the helical structures

remain intact into the explosion phase, after bouncing off the support rod. To find

the radius where the support rod takes effect (i.e., to find the maximum convergence

ratio where helical structures persist), four cases were simulated: an implosion with

support rod radius of 0.50 mm, 0.25 mm, and 0.10 mm, as well as a case with no

support rod. In each case, helical instabilities form during the implosion phase as ex-

pected. During the explosion phase, however, differences are observed. To compare

each case, the plasma column at 10 ns post-stagnation is presented in Figure 2.13.
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Figure 2.13: Comparison of thin-foil implosions for 4 different cases of on-axis support
rod radii: (a) 0.5 mm; (b) 0.25 mm; (c) 0.1 mm; (d) 0 mm (no rod).
The time chosen for this comparison is 10 ns after stagnation. The iso-
density surface shown is 1× 1019 cm−3. The image in part (a) should be
contrasted with Fig. 5 in Ref. [19]

For each case, an iso-density surface was chosen at 1× 1019 cm−3 and then color

contrasted so that the plasma structures on the liner could be more easily identified.

The instability structures are then traced and highlighted in Figure 2.13 to more

clearly show the differences in each of the four scenarios. Figure 2.13(a) shows that

with a support rod of 0.5 mm, the helical structures are preserved past stagnation,

which is consistent with the experimental results of Ref. [21]. Figure 2.13(d) shows

that with no support rod, the helical structure is almost entirely lost. There appears

to be little-to-no difference between Figure 2.13(c) and Figure 2.13(d), indicating

that a support rod radius of 0.1 mm has little-to-no effect on preserving the helical

structures post stagnation. Figure 2.13(a), (b), and (c) show that the helical structure

is increasingly preserved as the support rod radius is increased.

Presented in Figure 2.14 is a more detailed time evolution comparison of the case

with a support rod of radius of 0.5 mm [Figure 2.14(a)] and the case with no support

rod [Figure 2.14(b)]. In each case, there are clear helical structures at peak current
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(labeled as “+0 ns”), but as the liners reach stagnation and then expand outward, the

helical structures are preserved in the explosion phase of the case with the support

rod and not in the case with no support rod. For ease of comparison, the plots in

Figure 2.14 are colored according to distance from the axis so that the differences in

structure are more apparent post stagnation.

For the case with no support rod, a plasma column forms on axis from low-density

“precursor” plasma being blown in ahead of the bulk of the imploding liner material.

The morphology of the on-axis precursor plasma, prior to the arrival of the bulk of

the imploding liner material, has been found to set the morphology of the final bulk

stagnation column in wire-array z-pinch experiments [51] as well as in the thin-foil

liner simulations presented in this dissertation [23]. A more detailed analysis of this

behavior is presented in the next section. For now, we simply note that the addition

of a massive on-axis support rod prevents this relatively low-density precursor plasma

from morphing (due to instabilities) into a shape other than that of the much more

massive on-axis support rod. Instead, the precursor plasma accumulates along the

smooth surface of the support rod, creating a uniform cushion for the bulk of the

liner material to implode onto. This cushion, along with the rod radius, dictates the

maximum convergence ratio that the imploding liner will obtain.

The maximum convergence ratio achieved in each of the four cases is listed in Ta-

ble 2.1. Because of the instability structure, it is difficult to determine the minimum

radius achieved by the liner at stagnation. To determine a minimum radius and thus

a convergence ratio, each of the four cases was analyzed at the point of stagnation

as follows. Only plasma of density equal to or greater than the initial liner density

of 6× 1019 cm−3 was considered. This is plasma three orders of magnitude less than

solid density. Plasma of density below this threshold was ignored. Next, the average

radius of this plasma column was determined by measuring the radius of each insta-

bility peak and trough along one side of the plasma column. These values were then
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Figure 2.14: Time evolution comparison of thin-foil liner implosions for on-axis sup-
port rod radii of (a) 0.5 mm and (b) 0 mm (no rod). The time labels are
relative to peak current. For ease of contrasting, the coloring is based on
distance from the cylindrical axis and is tinted slightly red for the case
with no support rod and slightly blue for the case with the support rod.
The iso-density surface shown is 1× 1019 cm−3.
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averaged to obtain an approximate average radius of the column. Referring to Table

2.1, the convergence ratio does not vary strongly with the radius of the support rod

for support rod radii of 0.25 mm and smaller. Furthermore, the convergence ratio for

the 0.5-mm case is notably smaller than the other three cases. The 0.5-mm case is

also the case where helical instability structures were best preserved after stagnation.

Support Rod Average Radius Convergence Ratio
Radius (mm) at Stagnation (mm) (Cr)

0.5 1.045 2.87
0.25 0.62 4.84
0.1 0.791 3.79
0 0.756 3.95

Table 2.1: Minimum radius and maximum convergence ratio obtained for each of the
four support-rod cases simulated.

2.5 Precursor Plasma Column Morphology

Without a support rod, a precursor plasma column is able to form from plasma

blown in ahead of the imploding liner bulk. This precursor plasma column sets up on

axis early in time, before the bulk of the imploding liner material stagnates on top

of it. In our PERSEUS simulations, the morphology of the precursor column deter-

mines the morphology of the final stagnation column. This is shown in Figure 2.15,

where we highlight the formation of structures in this central plasma column that

then develop into the dominant structures of the stagnating and exploding plasma

bulk. In Figure 2.15, the formation of a well-defined plasma structure in the pre-

cursor and stagnation columns is highlighted by the white arrow. Similar behavior

has been observed previously in wire-array z-pinch experiments (see Fig. 13(b) in

Ref. [51]). Although precursor plasma columns are often observed in wire-array z-

pinch experiments, they are more difficult to observe in liner implosion experiments.

42



This is because the imploding liner wall obscures a direct side-on view of the pre-

cursor plasma for most diagnostics (i.e., non-penetrating diagnostics). Nonetheless,

precursor plasmas in metal liner experiments have been detected by inserting B-dot

probes inside the imploding liner [15]. They can also be imaged using end-on diag-

nostics [52]. Though a detailed discussion of wire-array z-pinch physics is beyond

the scope of this dissertation, we note that the physics of wire ablation and precur-

sor plasma formation in wire-array z-pinches is a bit different from precursor plasma

formation in thin-foil liner experiments. Nevertheless, the fact that PERSEUS ap-

pears to capture the physical connection between the morphology of the precursor

plasma column and the morphology of the stagnation column, as has been observed

in wire-array z-pinch experiments [51], is encouraging.

43



Figure 2.15: Simulation of a thin-foil liner implosion with no support rod on axis.
The lack of a support rod allows a precursor plasma column to assemble
on axis with various instability structures. A particularly well-defined
structure is identified by the white arrow. This structure is tracked
through stagnation and into the explosion phase. These six frames illus-
trate that the morphology of the low-density precursor plasma, which
arrives on axis ahead of the imploding liner bulk, is largely responsible
for setting the morphology of the imploding liner bulk during stagna-
tion and explosion. This figure should be contrasted with Fig. 13(b) in
Ref. [51]
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CHAPTER III

Origin of Helical Instabilities in Axially

Premagnetized Thin-Foil Liner Z-pinch Implosions

using Hall Magnetohydrodynamics

As the previous chapter discussed, helical MRTI structures have been observed in

z-pinch-driven liner implosion experiments with a pre-imposed axial magnetic field.

In this chapter, it will be shown that the formation of these helical structures can be

described by a Hall magnetohydrodynamics (HMHD) model. PERSEUS was used to

study these helical instabilities, and the results show that a Hall Instability in the

low-density coronal plasma immediately surrounding the dense liner is responsible for

producing helically bunched plasma striations as well as an associated magnetic field

and current density. This seeds the helical pitch angle of the MRTI even when other

proposed helical seeding mechanisms are either not present in the experiments or not

accounted for in the simulations. For example, this mechanism does not require low-

density power-feed plasmas to be swept in from large radius or the development of

electrothermal instabilities. The Hall Instability is thus a new, independent explana-

tion for the origin of the helical instabilities observed in axially premagnetized liner

experiments. Simulation results supporting this mechanism are presented.
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3.1 Simulation Setup

The simulations presented in this section used a fifth order central finite-volume

method with considerable accuracy improvements over the third order method used in

the simulations in the previous section. As a result, the increased accuracy has allowed

better analysis of the simulation data that has shown that helical instabilities can be

produced through Hall physics alone and that initial helical seeding is unnecessary

[20,23]. In Figure 3.1 the simulation setup is presented, which includes a plasma liner

of uniform initial density and uniform initial temperature, with a low-density coronal

plasma layer immediately surrounding the denser liner. The current pulse that drives

the simulation is a sine-squared pulse with a rise time of 200 ns and a peak current

of 600 kA.

The simulation setup was chosen to match the conditions of university-scale thin-

foil experiments as much as possible. However, due to the computational challenges of

properly resolving the ablation of a 400-nm-thick aluminum foil liner, the simulation

is not allowed to fully evolve until times later than 25 ns into the current pulse, at

which point the liner is expected to have already ablated into a 1-eV liner plasma of

250-µm thickness. During the times from 0 to 25 ns into the current pulse, the elec-

tromagnetic fields are allowed to evolve while the plasma is held motionless. These

pre-ablated conditions come from the results of highly resolved HYDRA simulations

conducted previously to study the early-time foil ablation process in detail [53]. These

pre-ablated conditions are used as the initial conditions for the PERSEUS simula-

tions presented herein. These pre-ablated initial conditions, as well as the effects of

the on-axis plastic support rod (which is necessary to support the thin-foil liners in

experiments), are discussed in further detail in Chapter II and Ref. [23].

Immediately surrounding the dense liner plasma is a low-density coronal plasma

layer, initialized with a thickness of 1 mm, a temperature of 5 eV, and a density of

6×1014 cm−3, which is 20× the density floor in PERSEUS. The version of PERSEUS
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used in this work is capable of handling 9 orders of magnitude density variation. Be-

tween the coronal layer and the liner plasma are two single cell layers that step the

density down from the liner plasma density to the coronal density to prevent artifi-

cial numerical effects from developing due to sharp density gradients. This coronal

layer heats rapidly to a few hundred eV within ∼10 ns. The dynamics of this layer,

including its ability to seed helical MRTI, is the subject of this Chapter.

Each PERSEUS simulation included over 7 million cells, with cell sizes of approx-

imately 62.5 × 62.5 × 32 µm3, for a total simulation volume of 14 × 14 × 6.125 mm3.

The simulations were run on 64 cores on the Great Lakes computing clusters at the

University of Michigan. The simulated temporal extent was 250 ns with time steps

on the order of one picosecond. Multiple conductivity models were used, including a

Lee-More-Desjarlais resitivity model combined with a Spitzer model, a Spitzer model,

a constant conductivity model, and a zero resistivity model. It should be expected,

however, that there is non-negligible numerical resistivity that will allow some pen-

etration of magnetic field into the liner even in the absence of an applied resistivity.

It was found that the choice of conductivity model had negligible impact on the Hall

instability effects discussed. Electrons velocities are limited through electron iner-

tia; however, this was found to not have significant impact on the behavior of the

Hall instability structures. This will be discussed further in a later section. In total,

each simulation required upwards of 60 wall-clock hours to run. A random density

perturbation of less than 1% was applied to the liner cells and to the corona cells

to seed instability growth. A 2-T axial magnetic field was applied throughout the

simulation volume initially (and maintained at the radial boundary for the duration

of the simulation) to match previous university-scale axially premagnetized z-pinch

experiments [21].
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Figure 3.1: Initial conditions of the simulation setup that shows the coronal layer (6×
1014 cm−3) and the liner plasma (3× 1019 cm−3). In addition, two single
cell layers between the liner plasma and coronal plasma are included that
help to step the density down and reduce the sharp density gradient. Note
a uniform 2-T axial magnetic field is applied throughout the simulation
volume.
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3.2 Hall Interchange Instability As a Seed for Helical MRTI

In an Ideal-MHD context, the interchange instability manifests as magnetic field

and plasma trading position, also known as a flute instability driven by magnetic cur-

vature. In the absence of magnetic curvature the Hall term can drive an interchange

instability through electron drifts. With the Hall term, the interchange instability

manifests itself in several ways. One of the major effects is that the current is ad-

vected into helical bunches and vortices are formed in the current. This is driven by

magnetic energy release. The result is that helical striations in the azimuthal current

are formed in the coronal plasma and are imprinted on the dense liner plasma that

is surrounded by the coronal layer. In addition, the current is strongly force-free,

meaning it is aligned with the magnetic field and it stays force-free well into the im-

plosion (>185 ns). The magnetic field also maintains its helicity in large part because

of the force-free current being helical as well. The result of the force-free current

is that there is a significant amount of azimuthal current which leads to axial flux

amplification. This adds more axial magnetic field helping to maintain the magnetic

field helicity which also leads to seeding of helical MRTI. The axial magnetic field

is amplified by a factor of ∼8× over the course of the current pulse rise time. The

force-free currents can be seen in Figure 3.2, at 185 ns into the current pulse, where

the magnetic field lines are traced in blue, the current is traced in red, and the dense

liner plasma is shown at an iso-density surface (1024 m−3) with helical MRTI clearly

formed.

As discussed, the interchange instability strongly influences the flow of currents

in the coronal plasma. This leads to a helical perturbation in the current that is

magnetic field aligned. This perturbation grows quickly and maintains its helical

pitch as the magnetic field remains relatively helical due to flux amplification from

the azimuthal component of the helical current. The perturbation in the azimuthal

component of current density is shown in Figure 3.3.
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Figure 3.2: Helical MRTI forming in the dense liner plasma 185 ns into the current
pulse. The iso-density surface shown is for 1024 m−3. Magnetic field lines
are traced in blue and current density streamlines are traced in red.
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Figure 3.3: Helical perturbation in the azimuthal component of the current density,
plotted on an iso-density surface (1024 m−3) at 75 ns. This highlights one
of the perturbation effects of the Hall interchange instability, which leads
to helical formations in the current on the liner plasma outer surface.
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To demonstrate how the perturbations in the current, within the coronal plasma

layer, lead to seeding of the MRTI structures on the liner plasma, Figures 3.4 and 3.5

are shown, which consist of several slices of the full 3-D data at several time steps.

In these figures, a transparent iso-density slice of the liner plasma (of density 1023

m−3) is overlaid on top of plots of the azimuthal (Fig. 3.4) and radial (Fig. 3.5)

components of the current density. This shows how the perturbations in the coronal

layer embed into the liner plasma and work to seed the wavelength and mode number

of the MRTI structures. In Figure 3.4, the perturbations in current in the coronal

layer embed into the liner plasma, and at 170 ns, where the MRTI structures are

outlined on the outer surface of the liner plasma, the current perturbations correlate

directly with the MRT instability lobes. The Hall interchange instability drives these

current perturbations early in the coronal plasma current and forms within the first

50 ns of the simulation.

A growth rate for the observed instability is determined by taking an axial line-out

through the coronal plasma layer of the azimuthal current bunches and measuring the

perturbation amplitude. The growth rate from this analysis is found to be 0.1 ns−1

+/- 0.02 ns−1. From Eq. (1.36) in the theoretical analysis presented in Sec. 1.3.2, the

expected growth rate is 0.12 ns−1 +/-0.05 ns−1. The theoretical growth rate is highly

dependent on initial magnetic field, coronal plasma density, and axial wave number.

It should be noted that local analysis, which was used to determine the simulated

growth rate, often over estimates instability growth rates. A plot of this growth rate is

shown in Figure 3.6. The error bars are determined by one standard deviation in the

instability amplitudes at each time step. In addition, the axial wave number is plotted

below in Figure 3.7. The instability wave number is set almost immediately as the

plasma is allowed to evolve at 25 ns as discussed above in Sec. 3.1. This wave number

remains relatively constant while the Hall interchange instability is still the dominant

instability effect. Note that in the growth rate analysis, there is a steep drop off at
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Figure 3.4: Perturbation in the azimuthal component of the current density, plotted
with an iso-density surface slice of the liner plasma (1023 m−3) at six time
steps to show the process of the perturbations forming in the coronal
layer and embedding into the dense liner plasma. The cylindrical axis
of symmetry is the right edge of each image, while the outer simulation
boundary is the left edge of the images.
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Figure 3.5: Perturbation in the radial component of current density, plotted on a 2-D
slice from the simulation volume over top of which an iso-density surface
transparency of the dense liner plasma (1023 m−3) at four time steps to
show the process of the perturbations forming in the coronal layer and
extending into the liner plasma.
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75 ns. This is likely due to other slower growing instabilities like MRTI becoming

more dominant and disrupting the interchange instability. Note that for this growth

rate analysis, the resistivity in the simulation was set to zero throughout. This was

done due to the fact that the theoretical analysis and theoretical growth rate were

determined assuming zero resistivity. It was found that changing the conductivity

model from a coupled Lee-More-Desjarlais and Spitzer model to a constant value of

zero had little effect on the Hall instability dynamics. Electron inertia terms were

included in some simulations to provide a limiting mechanism for electron velocities,

but it was found that the inertia terms had no discernible effect on the Hall instability

dynamics compared to a limiting method using a static limiter term. In either case,

the electron velocities never exceeded the speed of light.

3.3 Boundary Conditions Effects

An important factor that determines the dynamics of the coronal layer, and there-

fore the dynamics of the liner implosion, is the choice of boundary condition on the

upper and lower z boundaries. We consider two boundary conditions in this work,

namely periodic and open boundaries.

Periodic boundary conditions have the effect of leading to reduced Hall instability

effects as compared to an open boundary condition. This is due in part to this

boundary condition leading to the compression of the coronal layer onto the outer

liner plasma surface faster than what is seen in an open boundary simulation. This is

in large part due to periodic boundary conditions on the lower and upper z boundaries

not allowing azimuthal flux to leave through the boundary. This prevents several

effects that would lead to axial flux amplification, which in turn leads to the coronal

layer being compressed by J×B forces within the first 50 ns of the simulation. The

consequence is that Hall effects are not able to establish in the coronal layer before

its compression and therefore do not have the requisite time to seed helical MRTI in
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Figure 3.6: Plot of the azimuthal perturbation amplitude growth rate. The ampli-
tude was taken by an axial line-out through the coronal plasma subject to
the Hall interchange instability. The growth rate found from this analysis
compares very closely to the growth rate predicted by theory. The er-
ror bars are determined from one standard deviation in the perturbation
amplitude.
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Figure 3.7: Plot of the axial wave number of the perturbation in the azimuthal cur-
rent. The wave number is set within a few nanoseconds of the simulation
and remains fairly constant throughout the period when the interchange
instability is still the most important instability (.80 ns).
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the liner plasma.

When an open boundary condition is implemented on the axial boundaries, az-

imuthal flux (and therefore EM energy) is able to leave the simulation domain by

outflow which allows for the amplification of axial magnetic flux. This effect was

studied in 2-D by Seyler in the context of gas-puff z-pinches [54]. In those gas-puff

simulations, it was found that the choice of boundary condition was imperative to

producing an increase in Bz due to an axial loss of Bθ flux due to use of a Poynt-

ing outflow boundary condition. The driving factor of this effect is the conductivity

tensor described in Sec. 1.2.2, which is an effect of including the Hall term. The

parallel term (with respect to the magnetic field) in the conductivity tensor is the

most conducting and therefore it leads to currents flowing along magnetic field lines.

For strongly magnetized electrons, the total current, which is generally force free, is

approximately:

J = B
BzEz
B2η

. (3.1)

More generally this current is J = b̂b̂ ·E/η, where b̂ is the unit vector in the direction

of the magnetic field. If this current exists in a small sheath region then outside this

current sheath there will be only azimuthal field and inside this sheath will be only

axial field. This is indeed what was observed in Ref. [54]. A consequence of the loss

of azimuthal flux and increase in axial flux was a reduction in the implosion of the gas

puff due to the increase in axial magnetic pressure. This effect was only seen when the

Hall term was included in the generalized Ohm’s Law (GOL). The hallmark of this

effect was the establishment of a long-lived shell of current in the low density plasma

surrounding the gas-puff at large radii. For the 3-D thin-foil simulations presented

here, a similar current effect is observed early in the simulation. This current effect is

shown in Figure 3.8, where the azimuthal current component is plotted on a 2-D slice
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of the 3-D data at 50 ns. One difference between the 3-D thin-foil liner simulations

presented here in this dissertation and the 2-D gas puff simulations presented in

Ref. [54] is that the current filament does not have the same stability. In Figure 3.8,

at the top of the simulation, the filament is already being dispersed at 50 ns. It is

not observed in the thin-foil simulation beyond ∼80 ns. This difference is due to

the use of a Poynting outflow boundary condition used in the gas-puff simulations

of Ref. [54] which leads to more outflow of the azimuthal flux as compared with

the outflow boundary conditions used here. Whereas the thin-foil simulations shown

here implemented an outflow axial boundary condition. The correct axial boundary

condition for the thin-foil z-pinch liner is difficult to know and would require careful

experimental work to determine and we must leave it to future work.

3.4 Comparison of Hall-MHD and MHD

One of the abilities of PERSEUS is that it is easy to switch Hall physics on and off.

This allows for direct comparisons of simulations of the coronal layer with and without

Hall physics included. This section presents a series of comparisons to demonstrate

that Hall physics is necessary to see the effects discussed in this dissertation.

First, in Figures 3.9–3.12, a series of comparison images of the azimuthal compo-

nent of current at 75 ns and 100 ns is presented. These four images are 2-D slices from

full 3-D simulations and show that when Hall physics is included, the characteristic

perturbations in azimuthal current are present, and when Hall physics is omitted,

these perturbations are not present. Figures 3.9 and 3.10 show a side-on view of the

azimuthal current density in the coronal layer at 75 ns. The liner plasma is repre-

sented as a transparent grey iso-density slice (1024 m−3) similar to Figures 3.4 and

3.5. At this time step, the liner plasma has not begun to implode. In the MHD case

(Fig. 3.9), the azimuthal current lacks the regular bunching that is the result of the

Hall instability. By contrast, this regular bunching is seen in the simulations that
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Figure 3.8: Plot of a 2-D slice of Jθ from a 3-D simulation of a thin-foil z-pinch with
open outflow boundary conditions on the upper and lower z boundaries at
50 ns. The Hall instability bunching of Jθ in the coronal layer is evident
as well as the filament of Jθ discussed in Seyler’s gas-puff simulations [54].
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Figure 3.9: Plot of the azimuthal current density from a 2-D slice of the full 3-D
simulation at 75 ns with Hall physics omitted. This image also has a
partially transparent grey iso-density slice (1024 m−3) to show the liner
plasma. In this image, the lack of Hall physics prevents the Hall insta-
bility dynamics, in the azimuthal current, to take place and from the
current bunching which has been discussed throughout this dissertation.
The cylindrical axis of symmetry (centerline) is the rightmost edge of the
image.
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Figure 3.10: Plot of the azimuthal current density from a 2-D slice of the full 3-D
simulation at 75 ns with Hall physics included. This image also has a
partially transparent grey iso-density slice (1024 m−3) to show the liner
plasma.
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Figure 3.11: Plot of the azimuthal current from a 2-D slice of the full 3-D simulation
at 100 ns with Hall physics omitted. This image again has a partially
transparent grey iso-density slice (1024 m−3) to show the liner plasma.
In this later time step (relative to Fig. 3.9), the azimuthal current has
compressed against the outer surface of the liner plasma and shows no
perturbation structures.

include the Hall term in the generalized Ohm’s law (see Fig. 3.10).

Without the Hall term to drive this instability, the azimuthal current has random

bunching in the coronal layer, but lacks the regular pattern seen when Hall physics is

included. Figures 3.10 and 3.12 show the regular pattern that is due to the interchange

instability, while Figures 3.9 and 3.11 lack this. To show how this affects the current

on the surface of the liner plasma, two images of iso-density surfaces of 1024 m−3 are

plotted at 100 ns with the azimuthal current displayed. In the MHD case (Figure
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Figure 3.12: Plot of the azimuthal current from a 2-D slice of the full 3-D simulation
at 100 ns with Hall physics included. This image again has a partially
transparent grey iso-density slice (1024 m−3) to show the liner plasma.
In this later time step with Hall physics (relative to Fig. 3.10), the
azimuthal current in the coronal layer continues to display the bunching
and vortices that are the result of the Hall instability.
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Figure 3.13: Plot of the azimuthal current density at 100 ns with Hall physics omitted.
This image is of a full 3-D iso-density surface (1024 m−3) to show the
liner plasma’s outer surface. In this plot, the azimuthal current does not
show a predominant, consistent pattern.
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Figure 3.14: Plot of the azimuthal current density at 100 ns with Hall physics in-
cluded. This image is of a full 3-D iso-density slice (1024 m−3) to show
the liner plasma’s outer surface. In this plot, the azimuthal current
shows a regular helical pattern.
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3.13), there is no pattern to the azimuthal current, while in the case with Hall physics

(Figure 3.14), there is a clear regular helical pattern on the liner’s outer-surface. When

Hall physics is included, the Hall instability in the coronal layer leads to this helical

pattern on the liner’s outer surface, which can then provide a seed for the helical

MRTI discussed throughout this dissertation.

Another important aspect to the interchange instability (driven by the Hall term)

is its adherence to a helical force-free configuration of the current and magnetic field.

To demonstrate this, Figures 3.15 and 3.16 are presented, with magnetic field and

current density streamlines traced around the liner at a time of 100 ns into the current

pulse. In the case with the Hall term included (Figure 3.15), the current has a helical

orientation that is well aligned with the magnetic field, and thus the plasma is in a

force-free state. In the case without the Hall term (Figure 3.16), the magnetic field

and the current have a much more azimuthal orientation. As discussed, when Hall

physics is included, current vortices are produced and can be seen in the current

traces of Figure 3.15, which shows a switch-back like feature. This feature is not seen

in the current traces of the simulation without Hall physics (Figure 3.16).

Due to the lack of Hall instability effects in the MHD case, helical MRTI structures

are not observed. The MRT instability is azimuthally correlated, as is the magnetic

field after ∼160 ns. When Hall physics is included, the MRTI structures are very

helical, as seen in Figure 3.2.

3.5 Discussion

As discussed in Sec. 1.3.2, the Hall interchange instability is not dependent on

the resistive term in the GOL. This means that the conductivity model is relatively

unimportant to the development of the instability perturbations observed in the cur-

rent components in the coronal plasma layer. This has been confirmed this by using

several different conductivity models. These efforts found no qualitative differences
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Figure 3.15: Plot from a simulation including Hall MHD of the liner plasma at an iso-
density surface of 1023 m−3 with magnetic field traced in blue and current
density traced in red at 100 ns. The current is helical and generally
force-free due to effects from the Hall term. Note also that the current
traces have a switch-back like feature which is due to the current vortices
created by the Hall instability.

68



Figure 3.16: Plot from an MHD simulation that does not include Hall physics of the
liner plasma at an iso-density surface of 1023 m−3 with magnetic field
traced in blue and current density traced in red at 100 ns. The current
does show some force free behavior at this time step, but note that
the magnetic field is less helical compared with the HMHD simulation
at the same time step. Also, the current traces lack the switch-back
feature because the Hall instability is not present.
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in the Hall instability effects.

Additionally, the electron inertia terms are similarly unimportant for the develop-

ment and dynamics of the Hall instability. This was determined by running PERSEUS

simulations with electron velocities limited by either an artificial limiting term, or by

the inclusion of the electron inertia terms. The effects in both cases were the same.

That said, it is important to limit the electron velocities so that they do not exceed

the speed of light; otherwise, nonphysical instability structures and effects takeover.

PERSEUS simulations were run in which the coronal layer was non-existent or

was compressed against the liner within the first few time steps. In these simulations,

the Hall instability effects were not present as there was no coronal plasma layer.

As a result, the liner plasma did not produce helical MRTI as it imploded; instead,

the MRTI structures were azimuthal. Simulations were also run where the starting

density of the coronal layer was increased by a factor of 10, and the Hall effects were

not seen. This is due to the fact that the Hall term in the GOL has an inverse relation

to density, thus it has its strongest effect (relative to resistive effects) in low-density

plasmas. To observe the effects described in this dissertation, it is necessary to achieve

as low of a density floor as possible. PERSEUS’s capabilities in modeling 9–10 orders

of magnitude in density allows it to achieve a low enough density floor for the Hall

effects to occur within the coronal plasma layer. A key aspect that determines the

preservation of the coronal layer is the choice of fast wave speed within the flux

routine of the code. In the version of PERSEUS used in this study, a flux solver is

implemented as described by Batten et. al., [55] where the fast wave speed was set

to be the Alfvén speed plus the ion sound speed. If this value was set to be just the

ion sound speed, the coronal layer was not preserved. The choice of fast wave speed

determines if the outer surface of the liner plasma has a pseudo-ablation effect that

allows the coronal layer to persist around the liner plasma. This phenomenon is not

exactly physical in the code, but it captures the effects of the coronal plasma which is
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known to occur in experiment [32]. Modeling the true physical mechanisms involved

with the coronal plasma formation is beyond the capabilities of PERSEUS and may

require kinetic modeling. That said, the Hall effects that then occur in the coronal

plasma layer are well within the scope of PERSEUS’ capabilities.

In future simulations and experiments, it will be important to understand how the

coronal layer is formed and maintained. Along with this, electro-thermal instability

effects are beyond the current capabilities of PERSEUS, as it is extremely difficult to

properly resolve the phase transitions of the aluminum thin-foil from solid metal to

low-density plasma. Doing so will require more robust conductivity models and/or

kinetic models.
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CHAPTER IV

Discussion and Summary

For many years, magnetohydrodynamics codes have relied solely on the resistive

term in the generalized Ohm’s law for simulation z-pinch plasma dynamics. The Hall

term was largely ignored as it was difficult to implement and it was believed that the

plasmas of interest in a z-pinch setting were outside the low-density Hall regime. The

work presented in this dissertation shows that the Hall term is incredibly important

to fully capture the complete dynamics of z-pinch plasmas, especially thin-foil liner

z-pinches. PERSEUS is a code that is fairly unique at the moment in its capacity

to simulate z-pinch plasmas in full 3-D with the inclusion of Hall physics. This

is key for exploring and studying the effects described in the work presented in this

dissertation. The importance of Hall physics is highlighted by the recent trend within

the high energy density physics community to develop new codes that include Hall

physics and retro-fit older resistive MHD codes with new routines to include Hall

physics.

The value of including the the Hall term is shown in the results presented within

this dissertation. As was discussed, incorporating the Hall term in the generalized

Ohm’s law is necessary to produce the helical MRTI structures in thin-foil liner plasma

z-pinches. Although several explanations for seeding mechanisms have been pro-

posed for thick-walled liner z-pinches such as the MagLIF concept at Sandia National
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Laboratories, many of these considerations are not applicable to the university-scale

thin-foil liners that were studied for this dissertation. For example, it has been pro-

posed [4, 20] that the helical MRTI observed in MagLIF implosions on Z is the re-

sult of low-density plasma being produced in the anode-cathode gaps of the 20-MA

Z-machine. Prior to the implosion of the liner, this low-density plasma in the anode-

cathode gap implodes onto the liner’s outer surface. Embedded in this low-density

plasma is the pre-imposed Bz field. Thus, the Bz flux is compressed up against

the liner’s outer surface, thereby amplifying Bz and increasing the ratio of Bz/Bθ

at the liner’s outer surface. However, recent university experiments have found that

very little plasma is produced in the anode-cathode gaps of smaller, 1-MA machines

without doing something very deliberate to produce the plasma [30]. Yet, thin-foil

liner z-pinch implosions on MAIZE still develop helical instabilities [21]. Thus, an-

other mechanism must be responsible for the helical MRTI, at least for thin-foil liner

implosions on smaller, 1-MA machines.

A second seeding mechanism that is thought to play a significant role in the seeding

of helical MRTI in MagLIF implosions on Z is the electro-thermal instability (ETI).

However, this instability seeding mechanism is not accounted for in the PERSEUS

simulations presented herein, because PERSEUS lacks the requisite material and

conductivity models. Thus, in these PERSEUS simulations, it is the Hall instability

and Hall effects which produce the helical MRTI structures observed.

In addition to exploring the origin of the helical MRTI structures, PERSEUS was

used to explore the late time instability dynamics that occur as the imploding liner

plasma stagnates on a central support rod. It was found that the presence of the

support rod was responsible for helical MRTI structures maintaining their integrity

throughout stagnation and into the explosion phase, thus explaining the experimental

observations presented in Ref. [21]. It was also found that without the presence of

the support rod an on-axis plasma column forms and dictates the morphology of the
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stagnation column. Similar behavior has been observed in wire-array z-pinches [51].

In the thin-foil liner simulations, it was found that this precursor plasma column

carries approximately ∼ 1% of the total drive current and is unstable to kink-mode

instabilities.
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CHAPTER V

Future Work

This dissertation demonstrates the importance of Hall physics in fast z-pinch

implosions. There are several directions for future work that would continue to explore

the effects studied here. First, it will be necessary to study the Hall physics effects

in full-scale MagLIF on the Z facility. Going from a 1-MA university scale thin-foil

liner to a thick liner designed for fusion experiments at >20 MA will be necessary

to understand the impact of Hall physics on this important experimental platform.

While Hall physics has been shown to provide an independent seeding mechanism for

helical MRTI on thin-foil liners, it is likely that in a thick-walled liner implosion on

Z, Hall physics will play a role in conjunction with other effects (e.g., ETI and flux

compression in the power feed) to seed helical MRTI.

One important aspect where Hall physics may play a role at larger 20-MA scale

machines is in the power feed region. As was discussed previously, on a 1-MA pulsed

power device, little to no plasma is created in the power feed region, however, on a

20-MA machine, a significant amount of plasma is formed from blow off from the hot

electrode surfaces. This plasma is low-density, magnetized, and has current flowing

through it, making it highly susceptible to Hall physics effects. The challenge in

modeling this plasma using a Hall MHD code is that it is difficult to model the outer

surface of the electrodes and the production of hot plasma from that surface. Robust
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conductivity models, including the implementation of lookup tables, coupled with

techniques like adaptive mesh refinement, could solve these difficulties. As of the

writing of this dissertation, these capabilities are not available in PERSEUS. One

way to get around this is to use PERSEUS in conjunction with a kinetic model code

like the CHICAGO particle-in-cell code. This would allow for accurate modeling of

the formation of plasma in the power feed region [56]. Then a Hall MHD code like

PERSEUS can take over to model the plasma as it flows towards the target region.

Additionally, it will be important to compare PERSEUS results to codes that have

more robust physics models (e.g., multi-material models, conductivity models, and

radiation transport models) to determine the degree to which Hall physics is the most

dominate effect.

In the effort to create an ignited fusion platform using pulsed power, there is great

interest in designing and building a next generation pulsed power (NGPP) machine

capable of producing current pulses > 60 MA. Scaling the current MagLIF liners from

the 20 MA scale to this new regime will require very detailed simulations and theory.

The theory and simulation capabilities demonstrated in this dissertation should prove

key to obtaining a complete understanding of the plasma behavior and dynamics. One

of the big unknowns moving into the regime of an NGPP machine is the interplay of

different seeding mechanisms for the helical MRTI structures. It is unknown at this

time which effect will be the dominant driver of helical seeding between flux compres-

sion, electrothermal effects, or Hall physics effects. Large scale detailed simulations

with codes like PERSEUS that include Hall physics will be necessary to explore that

interplay.

Another important aspect to continue from this work is the effects of convergence

ratio on the stagnation column stability. This is important for inertial confinement

fusion efforts in general. To achieve the highest fusion yield possible from a z-pinch

implosion, it is necessary to maintain as much stability in the final stagnation column
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as possible. One challenge for continuing this particular line of simulation work from

a thin-foil setting to a MagLIF setting is that PERSEUS is a single material code.

This makes it impossible to simulate one material for the liner and another material

for the fusion fuel. One of the most important factors for determining the fusion yield

of a MagLIF liner is the amount of beryllium from the liner’s inner surface that mixes

into the fusion fuel and limits the fusion burn. Modeling multi-material configuration

for stagnation stability efforts in Hall MHD codes will be necessary to fully capture

the MagLIF liner performance in simulation.

Beyond simulation work, it will be necessary to compare the results produced

by PERSEUS, especially those concerned with the Hall interchange instability, with

experimental results. This is difficult because of the low density of the plasma of

the coronal layer. While the coronal layer has been observed in experiment [31], it

is difficult to measure the Hall interchange instability directly. It may be possible

to measure magnetic field perturbations, but this must be left to future work and

creative experiments.

This dissertation has already resulted in one peer-reviewed journal article, titled

“Extended magnetohydrodynamics simulations of thin-foil Z-pinch implosions with

comparison to experiments” [23]. This paper covers helical instability formation and

the effects of the on-axis support rod on the thin-foil liner implosions. A second

paper, titled “Hall Instability Driven Seeding of Helical Magneto-Rayleigh-Taylor

Instabilities in Axially Premagnetized Thin-Foil Liner Z-pinch Implosions”, has also

been prepared and is presently being submitted to the journal Physics of Plasmas.

This second paper discusses the Hall interchange instability and the origins of the

helical instability structures. Efforts at the national lab level have turned to Hall

physics to help complete our understanding of z-pinches. By applying PERSEUS

to MagLIF simulations and z-machine conditions, it will be possible to explore Hall

physics effects at the 20 MA regime and lead to many more publications. This will
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only be added to by moving into a NGPP 60 MA regime.
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APPENDIX A

Resolution Study of Hall Interchange Instability

Grid resolution is an important factor in achieving accurate simulation results.

The version of PERSEUS used for this dissertation was an Eularian code with a

Cartesian grid. This means that the grid was a series of cubes (as opposed to a

cylindrical grid for example), and the Eularian nature of the grid means that the grid

is static, unlike in a Lagrangian code. Also note that no adaptive mesh refinement

techniques were implemented. This provides several difficulties when attempting to

simulate an inherently cylindrical object like a z-pinch liner. If the grid resolution is

too low, aliasing effects can act as seeds for plasma instabilities which can obscure the

actual seeding effects that are of interest. Another consideration for the grid resolution

is that enough axial resolution has to be implemented to ensure that the magneto-

Rayleigh-Taylor instabilities form. To ensure this, a grid resolution of 125 µm3 was

found to be adequate. Higher grid resolutions were also explored and were not found

to have significant impact of the behavior of the instabilities that were explored in

this work.

To determine the effect of grid resolution on the Hall interchange instability, simu-

lations with the same initial conditions described in Chapter III were run with several

different grid resolutions. This allowed for a direct comparison across the different
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resolutions. One of the key findings in this study was that there is a limit on grid-

resolution that is necessary to resolve the instability structures. This applies both

for the Hall interchange instability and for the helical magneto-Rayleigh-Taylor insta-

bilities. For a comparison of the growth rate of the Hall interchange instability, the

analysis in Chapter III to determine a growth rate for the Hall interchange instability

was repeated for a series of grid resolutions. In each case, an axial line-out of the cur-

rent instability structures was taken and the variation of the azimuthal component of

the current was measured and analyzed to determine a growth rate for the instability.

In each case, the growth rate was ∼0.1 ns−1 or within about 20% of this value.

To compare the growth rates across different grid resolutions, Figure 3.6 from

Chapter III is repeated here in Fig. A.1 for reference. The simulation that produced

this data had a resolution of 125 µm3 and was a resolution near the lower limit

to observe these instability structures. In the next plot (Figure A.2), a resolution

twice that was used such that the cell size was ∼ 62.5 µm3. In the higher resolution

simulation, the Hall instability began forming 5-10 ns before what was observed in

the lower resolution simulation (Fig. A.1). However, in both simulations, the growth

rate was around 0.1 ns−1. In fact, the higher resolution simulation had a growth

rate that was even closer to the theoretically predicted growth rate of 0.12 ns−1. In

the intermediate resolution plot (Figure A.3) which follows the first two plots, the

growth rate is slightly lower but the timing of the instability growth matches the

lower resolution simulations very closely. These plots serve to show that resolution

does not dictate the growth rate of the Hall instability structures.
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Figure A.1: Plot of the azimuthal perturbation amplitude growth rate for a simulation
with grid resolution of 125 µm3. The amplitude was taken by an axial
line-out through the coronal plasma subject to the Hall interchange in-
stability. The growth rate found from this analysis compares very closely
to the growth rate predicted from theory (Eq. 1.36). The error bars are
determined from one standard deviation in the perturbation amplitude.
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Figure A.2: Plot of the azimuthal perturbation amplitude growth rate for a simulation
with grid resolution of 62.5 µm3. The amplitude was taken by an axial
line-out through the coronal plasma subject to the Hall interchange in-
stability. The growth rate found from this analysis compares very closely
to the growth rate predicted from theory (Eq. 1.36). The error bars are
determined from one standard deviation in the perturbation amplitude.
This plot was from a higher resolution simulation in which the instability
structures began forming earlier by about 5-10 ns as compared with the
lower resolution simulation presented in Fig. A.1.
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Figure A.3: Plot of the azimuthal perturbation amplitude growth rate from a sim-
ulation with grid resolution of ∼83 µm3. The amplitude was taken by
an axial line-out through the coronal plasma subject to the Hall inter-
change instability. The growth rate found from this analysis compares
very closely to the growth rate predicted from theory (Eq. 1.36). The er-
ror bars are determined from one standard deviation in the perturbation
amplitude. This plot was from an intermediate resolution simulation.
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