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Abstract— Planar wire arrays (PWAs) have been studied on1

both the University of Michigan’s (UM’s) low-impedance linear2

transformer driver (LTD), MAIZE (0.1 �, 0.5–1 MA, and3

100–250 ns), and the University of Nevada, Reno’s (UNR’s) high-4

impedance Marx bank generator, Zebra (1.9 �, 1 MA, and5

100 ns). Results with aluminum (low-atomic-number) and6

tungsten (high-atomic-number) double PWAs (DPWAs) were7

compared previously; thus, DPWAs made of brass (an alloy8

of mid-atomic-number elements copper and zinc) were recently9

selected for study to get a more complete understanding of low-to-10

high atomic number DPWA implosions on MAIZE. As the LTD11

is a relatively new pulsed power architecture, comparing results12

from traditional generators (such as Marx banks) will help us13

to better understand both technologies. Experimental diagnostics14

included an absolutely calibrated filtered polycrystalline diamond15
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detector (PCD), filtered Si-diodes, X-ray pinhole cameras, spec- 16

trometers, and optical shadowgraphy systems. Time-dependent 17

inductance modeling on the MAIZE LTD was derived from the 18

measured current trace. Radiative and implosion dynamics of 19

brass DPWAs on the MAIZE LTD are presented and compared 20

with previous results on the Zebra Marx generator. Implosions 21

on the MAIZE LTD featured a longer than expected current 22

rise time that was heavily dependent upon the load inductance, 23

as well as a longer pinching process and X-ray emission time than 24

comparable DPWA implosions on Zebra; however, implosions on 25

MAIZE produced L-shell plasmas comparable in characteristics 26

with previous studies on Zebra. 27

Index Terms— Linear transformer driver (LTD), planar wire 28

array (PWA), plasma pinch, shadowgraphy images, X-ray 29

spectra. 30

I. INTRODUCTION 31

LOW-IMPEDANCE linear transformer driver (LTD) archi- 32

tectures have been predicted to achieve greater efficiency 33

than the traditionally used Marx-driven generators and pro- 34

posed LTD machines have been designed with the potential to 35

reach higher currents than any currently existing Marx bank 36

machines [1], [2]. Thus, LTD architecture has been considered 37

a potential option for future petawatt-class Z-pinch generators. 38

The study of the radiative performance of Z-pinch generators 39

with LTD modules is very important for the proposed prospec- 40

tive new LTD-based accelerators Z 300 and Z 800 at Sandia 41

National Laboratories (SNL), Albuquerque, NM, USA [2]. 42

The study of radiation from high-energy-density (HED) plas- 43

mas has significant applications to magnetized liner inertial 44

fusion (MagLIF) at high-current Z-generators at SNL, as both 45

DPWAs and MagLIF plasmas produce a central cylindrical 46

radiating core and mid-atomic-number are used as tracers for 47

MagLIF plasma diagnostics [3]. In contrast to larger scale 48

machines, the availability and accessibility of university-scale 49

pulsed power drivers make them excellent options for the 50

development of the novel Z-pinch load configurations and are 51

integral to progressing research on HED Z-pinch plasmas. One 52

of the first 1-MA university-scale LTD generators was the low- 53

impedance Michigan accelerator for inductive Z-pinch exper- 54

iments (MAIZE) LTD (0.1 �, 0.5–1 MA, and 100–250 ns) at 55

the University of Michigan (UM), Ann Arbor, MI, USA [4], 56

that was used to produce results in this article. 57
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Planar wire arrays (PWAs) have been previously shown to58

be excellent radiators of X-rays at the University of Nevada at59

Reno’s (UNR’s), Reno, NV, USA, high-impedance Marx bank60

generator, Zebra (1.9 �, 1 MA, and 100 ns) (see [5], [6], [7],61

[8], [9], [10]) as well as on the Saturn generator at SNL [11].62

In particular, tungsten (W) double PWAs (DPWAs) have63

demonstrated the highest radiation yields amongst PWAs (up64

to 30 kJ), compact size (a few mm), and strong electron beams65

on the UNR Zebra Marx bank generator, and demonstrated66

applications to inertial confinement fusion research [5], [8].67

Recently, low-atomic-number aluminum (Al) and high-68

atomic-number W DPWAs have been successfully imploded69

in reproducible shots on the low-impedance MAIZE LTD [12],70

[13], [14]. Such results could be applicable to the new compact71

hohlraum design with parallel-driven DPWA X-ray sources,72

first tested on the high-impedance Zebra generator [8], [9].73

Thus, the experiments with PWAs on university-scale LTD74

generators (such as MAIZE) may be vitally important for the75

future of the inertial confinement fusion program. Also, as the76

LTD is a relatively new pulsed power generator architecture,77

it is essential to understand how Z-pinch HED plasmas per-78

form on currently active LTD machines and make comparisons79

to results from similar load configurations imploded on more80

traditional pulsed power devices, such as Marx banks, which81

have been used extensively for past experiments.82

However, very little information is available for mid-atomic-83

number wires imploded on a low-impedance LTD machine.84

For this reason, brass DPWAs were chosen for study on the85

MAIZE LTD. Brass presents a unique opportunity to study86

two mid-atomic-number elements, Cu and Zn, which made it a87

great candidate for study in conjunction with the existing data88

on low-atomic-number Al and high-atomic-number W DPWAs89

on the MAIZE LTD. In addition, previous results of brass90

DPWAs imploded on the high-impedance UNR Zebra Marx91

bank were presented in [7], where it was found that brass92

PWAs provided a unique opportunity to study L-shell radiation93

from Cu and Zn, with relatively low opacity effects in L-shell94

lines. The previous studies of brass DPWAs on Zebra also95

contributed to the decision to study brass DPWAs on MAIZE,96

as the comparison of implosion and radiative characteristics97

on both machines would further our understanding of this98

particular load on the MAIZE LTD.99

II. EXPERIMENTAL DETAILS100

New experiments with brass DPWAs were carried out on the101

UM low-impedance MAIZE LTD and compared with earlier102

experiments with brass DPWAs on the UNR high-impedance103

Zebra Marx bank generator. MAIZE is a single-cavity, low104

impedance (0.1 �), 1-MA class LTD with 100 ns rise time105

into an impedance matched load, which stores 7.9 kJ in its106

capacitors. Zebra is a high-impedance (1.9 �), 1-MA (or107

up to 1.7 MA when the load current multiplier (LCM) is108

applied [15]) Marx bank generator with a 100 ns rise time,109

which stores 150 kJ in its capacitors. The LTD cavity design110

allows for multiple cavities to be connected in series to111

increase the generator energy. Understanding how DPWAs112

perform on a single-cavity, low-impedance LTD machine,113

as well as a high-impedance machine, is vital for under-114

standing how DPWAs could perform on multicavity, relatively115

higher impedance LTD machines, such as the MYKONOS 116

machine at Sandia National Laboratories and other prospective 117

machines [2], [16]. 118

The DPWAs consisted of two wire planes of micrometer- 119

scale diameter brass wires [see Fig. 1(c)]. The DPWA masses 120

were calculated from the number of wires, the diameter of 121

the wires, and the wire material. In [6], it was observed that 122

DPWA implosion dynamics depend strongly upon the aspect 123

ratio φ, defined as the ratio of the array width to the interplanar 124

gap. In the following sections, we present results from two 125

brass DPWAs of different aspect ratios (a lower aspect ratio 126

φ = 1.67 and a higher aspect ratio φ = 2.33) imploded 127

on the MAIZE LTD generator (see Fig. 1 and Table I). The 128

anode–cathode gap was 1 cm, while the interwire gap was 129

1 mm. 130

Due to the relatively large inductance of the DPWA load 131

hardware, the MAIZE LTD was limited to 70% of the 132

maximum charge voltage to prevent damage to the main 133

(central) insulator and minimize voltage reversal on the 134

capacitors. Under these operating conditions, the peak cur- 135

rent was roughly 500 kA and the rise time ranged from 136

180 to 210 ns. 137

The DPWA experiments on MAIZE largely shared the same 138

diagnostics that were used on the UNR Zebra Marx bank 139

generator (see Figure 1). On the MAIZE LTD [Fig. 1(a)], the 140

load is housed in the center of a circular, 1-m-diameter vacuum 141

chamber located in the center of the 3-m-diameter cavity. 142

Experimental diagnostics were located inside and outside the 143

vacuum chamber. Diagnostics included various filtered X-ray 144

diodes; X-ray spectrometers and X-ray pinhole cameras; a 145

filtered Faraday cup placed above the load for measurement of 146

the electron beam; an ultrafast, intensified, 12-frame camera 147

for use in shadowgraphy/self-emission imaging (while only 148

shadowgraphy is presented in this article, self-emission imag- 149

ing was presented in [14]); and B-dot loops at four azimuthal 150

locations on the radial transmission line for measurement 151

of the time-resolved current pulse. Results of electron beam 152

measurements made with the Faraday cup above the anode 153

will be the subject of a future publication. 154

A side-on absolutely calibrated filtered polycrystalline dia- 155

mond detector (PCD) with a time resolution of 0.5 ns was used 156

to record X-ray emission throughout the pinching process. 157

The PCD was filtered to detect photons with energies above 158

the cutoff energy of 2.4 keV. For the purposes of this work, the 159

cutoff energy E is defined as the energy where the transmission 160

through the filter drops to a value of 1/e, where e is the base 161

of the natural logarithm. In addition to the PCD, three side- 162

on, cross-calibrated AXUV-HS5 Si-diodes (SiDs) with a time 163

resolution of 1 ns were implemented to measure time-resolved 164

X-ray output in three energy bands: >1.4, >3.5, and >9 keV. 165

All diode detectors were placed such that the lines of sight 166

aligned within 15◦ with respect to the planes of the arrays 167

[i.e., the line of sight that looks into the gap between the 168

planes, see Fig. 1(d)]. The oscilloscopes used featured a 169

500-MHz bandwidth and 5-GS/s sample rate, capable of 170

resolving the PCD time resolution. 171

Two side-on time-integrated X-ray spectrometers were 172

applied to measure electron temperature (Te), electron density 173

(Ne), and opacity effects of the brass Z-pinch plasmas, using 174
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Fig. 1. (Color online). (a) Top-down image of the MAIZE LTD vacuum chamber, with X-ray and electron beam diagnostics surrounding the DPWA load
in the center of the chamber: (1) X-ray PCD; (2) SiD; (3) soft X-ray KAP-crystal spectrometer; (4) hard X-ray LiF-crystal spectrometer; (5) X-ray pinhole
camera placed along the load wire planes; (6) X-ray pinhole camera placed orthogonal to the wire planes; (7) Faraday cup detector placed above the load in
the center of the chamber; (8) B-dot sensors placed along the edges of the chamber 90◦ from each other (not all B-dot sensors are visible in this image); and
(9) green arrow representing the optical probing beam path/camera line of sight through the chamber and load. (b) Top-down image of the Zebra Marx bank
vacuum chamber, with X-ray and electron beam diagnostics surrounding the DPWA load in the center of the chamber. Many of the same diagnostics were
shared between MAIZE and Zebra (diagnostic numbers are the same). (c) Image and top-down diagram of a DPWA load. The interplanar gap and planar width
are shown to highlight the determining factors of the DPWA aspect ratio. (d) Diagram of the angle from the center of the DPWA to the respective diagnostics.
The green arrow represents the center line of the load, looking down between the planes of the DPWA (the same line of sight as the shadowgraphy laser),
while the blue arrow represents the direction of the diagnostic. The angles to all diagnostics are measured from the center (i.e., angles range from 0◦–90◦).

TABLE I

EXPERIMENTAL PARAMETERS TESTED ON MAIZE. THE IMPLOSION TIMES ARE MEASURED RELATIVE TO THE START OF THE CURRENT PULSE.
THE RADIATED ENERGIES ARE FOR THE >2.4 keV BAND, INTEGRATED OVER THE DURATION OF THE EXPERIMENT. THE ERROR IN ENERGY

CALCULATIONS WAS 35% [13]. ASYNCHRONOUS LTD SWITCH FIRING TIMES AND CURRENT LOSS IN THE MITL REGION ARE FACTORED

INTO AN ESTIMATED ERROR OF APPROXIMATELY 50 kA IN THE MAXIMUM CURRENTS LISTED

nonlocal thermal equilibrium (non-LTE) kinetic models [7],175

[17], [18]. The two spectrometers were employed to measure176

X-rays in two different X-ray bands: a softer X-ray spectral177

region between 4 and 13 Å and a harder region between 178

1 and 2.4 Å. The softer X-ray spectrometer had a convex potas- 179

sium acid phthalate (KAP) crystal with a double lattice spacing 180
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2d = 26.63 Å, a radius of curvature of 51 mm, a 1-D axial spa-181

tial resolution of 4 mm, and a spectral resolution R = λ/�λ =182

500. The harder X-ray spectrometer had a convex lithium183

fluoride (LiF) crystal with a double lattice spacing 2d =184

4.027 Å, a radius of curvature of 25.4 mm, and a 1-D axial185

spatial resolution of 4 mm. The spectrometers were equipped186

with 7.5-μm-thick Kapton film together withk 3-μm-thick187

Mylar (aluminized on both sides with 0.15-μm-thick Al188

layers) to protect the film from unwanted outside light. The189

spectra themselves were recorded onto Kodak Biomax MS190

X-ray film, with grain size 0.12 ± 0.03 μm [19], [20].191

The non-LTE kinetic models for Cu and Zn were originally192

developed to analyze spectra from the Zebra generator [7],193

[17], [18]. The Cu and Zn models include the ground states194

as well as singly and doubly excited states, and atomic details195

for H- to Al-like ions. The atomic data is calculated using196

the flexible atomic code (FAC) [21]. Given plasma parameters197

(Te and Ne), the Cu and Zn kinetic models generate synthetic198

spectra. The synthetic spectra of L-shell Cu and Zn were199

then compared with the experimentally measured spectra, and200

the plasma parameters of best fit are chosen to determine201

the experimental plasma parameters. The primary factor in202

determining the electron density was the relative intensities203

of the Ne-like 3F or 3G lines compared with the Ne-like 4C204

line, while the electron temperature was inferred by comparing205

the relative intensities of neighboring ionization stages. The206

uncertainty of Te estimates is about 10%, while Ne is about207

20%–30% [7].208

The two side-on X-ray pinhole cameras (spatial resolution209

of 90 μm) were placed approximately 90◦ apart from each210

other to view the load from both the “front” and “side”211

views; the first was placed within 15◦ or less, with respect212

to the planes of the arrays, while the second was placed213

at approximately 80◦ ± 5◦ [see Fig. 1(d)]. Each pinhole214

can record three independent, time-integrated X-ray images215

(filtered to detect >1.4, >1.6, and >3.5 keV X-rays) using216

the same X-ray film.217

An intensified, ultrafast, 12-frame camera was used in218

conjunction with a 532-nm, 2-ns, frequency-doubled Nd:YAG219

pulse, split into optical beams with a 10-ns delay between220

each beam, for use as a backlighting source for shadowgraphy221

images [22]. Images were taken prior to and throughout the222

Z-pinching process to study the plasma evolution. All imaging223

windows for MAIZE shots presented in this article began prior224

to the main pinch, with 10-ns exposure per frame, to include225

images of early standing shock and precursor plasma column226

development.227

Four B-dot probes, radially located approximately 0.4 m228

from the load at the center of the chamber and equally spaced229

azimuthally (90◦ between adjacent probes) were used to mea-230

sure the time-resolved current trace throughout the Z-pinch.231

As the MAIZE LTD is a low-impedance machine, the change232

in inductance of the plasma load throughout the Z-pinching233

process has a larger effect on the current trace compared to234

stiffer (high-impedance) drivers like the UNR Zebra Marx235

generator. The effect that the load inductance has on the236

current trace can be explored by comparing the measured237

current trace to a simulated, static inductance (nonimploding)238

load to calculate an effective inductance of the load throughout 239

the Z-pinch as a function of time. This method is explained 240

in detail in [14] and [23]. 241

The wire ablation dynamics model (WADM) simulates the 242

implosion dynamics and wire ablation through the approxima- 243

tion of the wire material as discrete thin filaments with mass, 244

velocity, and the capability to conduct current [6], [7], [24], 245

[25], [26]. The model works by first inputting the generator 246

and load parameters. The load parameters include the thickness 247

of the wires, the total wire mass, the interplanar and interwire 248

gap spacing, and the ablation rate coefficient, which is an 249

intrinsic property of the wire material [25], [26]. The model 250

then calculates the inductive current distribution between the 251

wires and the magnetic field contribution for each individual 252

wire throughout the duration of the pinch. Each wire is taken 253

to be an individual filament, where the model simulates ablated 254

coronal plasma with kinetic energy and acceleration of each 255

filament determined by the calculated magnetic field. For this 256

work, the WADM model was used to calculate the location of 257

material mass accumulation throughout the pinching process, 258

and comparisons to shadowgraphy imaging. 259

Experiments on Zebra featured similar load parameters, and 260

are largely discussed in [7]. As mentioned earlier, many of 261

the same diagnostics used on MAIZE were also implemented 262

on Zebra. In addition, experiments on Zebra featured a time- 263

gated KAP spectrometer and a time-gated pinhole camera. The 264

UNR Zebra Marx bank itself also differs greatly from the UM 265

MAIZE LTD. The brass DPWAs imploded on Zebra were both 266

8/8 wire arrays (meaning each plane was made up of eight 267

wires), with a lower aspect ratio of φ = 1.63, 124-μg mass, 268

and a 2-cm anode–cathode gap. As Zebra is a high-impedance 269

and high-energy generator, the array masses on Zebra can be 270

higher than on MAIZE (the array masses presented in [7] 271

on Zebra were 2× heavier than those presented in this work 272

on MAIZE); however, the lower aspect ratio brass DPWA on 273

MAIZE was chosen to achieve a similar aspect ratio to the 274

previously presented brass DPWAs on Zebra (φ = 1.67 on 275

MAIZE and φ = 1.63 on Zebra). 276

III. IMPLOSION AND RADIATIVE PROPERTIES OF BRASS 277

DPWAs ON THE ZEBRA MARX BANK GENERATOR FOR 278

COMPARISON WITH PRESENT MAIZE RESULTS 279

In [7], the radiative characteristics and implosion dynamics 280

of two brass DPWAs (Zebra Shot# 1036 and Zebra Shot# 281

1257) were presented. Both brass DPWAs had identical array 282

configurations (8/8 wire arrays, aspect ratio φ = 1.63, and 283

124-μg array mass). The brass DPWA Zebra Shot# 1036 (see 284

[7, Fig. 5]) was successfully imploded on the Zebra Marx 285

bank, though it had an uncharacteristically long current rise 286

time for Zebra, of approximately 170 ns. The X-ray burst 287

began around 170 ns, approximately the same as the rise 288

time, and lasted until 220 ns, making for a total emission 289

time of roughly 50 ns, as measured by the PCD, which, 290

in that work, was only measured once and was filtered at 291

>0.75 keV [7]. The time-gated spectroscopic analysis showed 292

a good correlation with the X-ray burst, with the plasma 293

reaching a maximum electron temperature Te of 450 eV in 294
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Fig. 2. (Color online). Brass DPWA, φ = 1.67, MAIZE Shot# 1249 (6/6, interplanar gap = 3 mm, interwire gap = 1 mm, and array mass = 57 μg/cm).
(a) PCD signal (dark red) shows radiation in the >2.4 keV region, while the SiD signal (purple) shows the radiation signal in >1.4 keV spectral band. Current
(blue) rise time was 180 ns with main implosions occurring at 200–240 ns and at 255–280 ns from the start of current. Red dots correspond to moments when
a shadowgraphy image was taken (see Fig. 3). (b) One-dimensional spatially resolved, time-integrated X-ray spectrum is compared with theoretical modeling
to find plasma conditions of Te = 360 eV and Ne = 5 × 1019 cm−3 near the anode.

time with the peak of X-ray radiation burst, and an electron295

density Ne on the order of 1019 cm−3. Zebra Shot# 1257 also296

imploded successfully, and featured a similar current rise297

time and radiation burst timing to Zebra Shot# 1036 (see298

[7, Fig. 8]), as measured by the PCD. The spatially resolved,299

time-integrated spectra from Zebra Shot# 1257 showed an300

electron temperature of 450 eV near the anode and 400 eV301

near the cathode. In addition to the good correlation with the302

X-ray signal, analysis of the time-gated spectra showed a good303

correlation with maximum values from the time-integrated304

spatially resolved spectra, being the hottest at the peak of305

X-ray emission. The non-LTE spectral modeling for brass306

DPWAs showed evidence of strong opacity effects in the most 307

intense L-shell Cu and Zn lines, notably the Ne-like lines: Cu 308

3C, Cu 3D, and Zn 3C [7]. 309

IV. RADIATIVE PROPERTIES OF BRASS DOUBLE PLANAR 310

WIRE ARRAYS ON THE MAIZE LTD 311

Multiple brass DPWAs of different configurations were 312

successfully imploded on the MAIZE LTD generator. The 313

shots analyzed in this article represent two different aspect 314

ratios (φ = 1.67 and 2.33) and featured relatively high X-ray 315

output. MAIZE Shot# 1249, shown in Fig. 2, was chosen to 316
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display the results of the lower aspect ratio, φ = 1.67, and317

MAIZE Shot# 1250, shown in Fig. 4, was chosen to display318

the results of the higher aspect ratio, φ = 2.33, and brass319

DPWAs.320

A. MAIZE Shot# 1249, Brass DPWA, φ = 1.67, Radiative321

Properties322

As can be seen in Fig. 2(a), the lower aspect ratio, φ = 1.67,323

brass DPWA MAIZE Shot# 1249 (6/6, interplanar gap =324

3 mm, interwire gap = 1 mm, and array mass = 57 μg/cm),325

featured a current rise time of 180 ns, with the initial implosion326

and radiation burst beginning around 200 ns, which corre-327

sponds to a dip in the current trace. This dip in current328

is attributed to a drastic change in load inductance during329

the pinch, which will be discussed further in Section V. The330

implosion featured two distinct radiation bursts, which were331

detected by both the SiD measuring in the >1.4 keV band,332

as well as the PCD, measuring in the >2.4 keV band. The333

first burst reached its peak at 225 ns after the start of the334

current with the second burst reaching its peak at 265 ns.335

The first burst began radiating around 200 ns and finished at336

250 ns, while the second began radiating soon after at 255 ns337

and radiated up to 275 ns, making for a total X-ray emission338

time of approximately 75 ns in the >2.4 keV band for the main339

pinch. It should be noted that both bursts reached relatively the340

same peak maximum. The >1.4 keV band also featured two341

distinct peaks, but radiated longer, the second burst radiating342

until approximately 300 ns, making for a total emission time343

of approximately 100 ns in the >1.4 keV band. The load344

also began radiating in the >1.4 keV band earlier than the345

main pinch, beginning at approximately 80 ns and radiating346

up to 180 ns.347

The spatially resolved time-integrated X-ray L-shell spectra348

of Cu and Zn were analyzed using the S-UNR code, a non-349

LTE code developed at UNR [7], [17]. The spectral analysis350

from MAIZE Shot# 1249 [Fig. 2(b)] revealed an electron351

temperature (Te) of 360 eV and density (Ne) of 5 × 1019 cm−3
352

near the anode and demonstrates the evidence of optically353

thick Cu 3C and Zn 3C Ne-like lines.354

Fig. 3 shows the shadowgraphy images taken throughout the355

implosion of MAIZE Shot# 1249, from 72 to 182 ns after the356

start of the current, alongside WADM simulations of the same357

time. From these images, it can be seen that mass accumulation358

along the central axis formed a central “precursor” column (the359

precursor column is the accumulation of early ablated mass360

that gathers along the central axis prior to the pinch), beginning361

around 82–92 ns after the start of current. However, it can also362

be observed that the other precursor column “bent” toward363

one side of the load. The cause of this asymmetrical earlier364

formation is not yet fully understood. It can also be observed365

that there is a noticeable rise in the brightness of the central366

precursor column, beginning at 102 ns, as the central column367

began to draw some current away from the planes. This can368

be perceived in the shadowgraphy images as the background369

(the brighter areas not consisting of the ablating wires and370

central column) becomes noticeably darker, as the radiating371

column becomes a source of light, impeding the laser light372

source. This also corresponds to the beginning of the earliest 373

(and lowest magnitude) radiation burst in the >1.4 keV band 374

[see Fig. 2(a)]. Standing shocks can also be observed, forming 375

around the 102-ns mark (see [6] for a detailed explanation 376

of standing shocks and how they form). WADM modeling 377

showed a good correlation with the shadowgraphy images as 378

well, i.e., mass accumulation along the central axis beginning 379

around 82 ns and drastically increasing around 102–112 ns. 380

Likewise, the WADM simulation shows an increase in mass 381

accumulation around the central precursor column beginning 382

around 102–112 ns, correlating to the formation of the stand- 383

ing shocks. The mass accumulation along the central axis 384

beginning to draw current from the outer ablating wires into 385

the central axis causes a noticeable “dip” in the current trace 386

(though not as drastic as the main pinches), which corresponds 387

to a rise in the load inductance (see Section V). 388

B. MAIZE Shot# 1250, Brass DPWA, φ = 2.33, Radiative 389

Properties 390

The X-ray diode signals and current trace for the higher 391

aspect ratio Shot# 1250 (8/8, interplanar gap = 3 mm, inter- 392

wire gap = 1 mm, and array mass = 76 μg/cm), are shown 393

in Fig. 4(a). Similar to the lower aspect ratio load, the higher 394

aspect ratio load featured two distinct radiation bursts which 395

were detected in both the >1.4 keV band by a filtered SiD 396

and the >2.4 keV band, detected by the PCD. However, the 397

first X-ray burst in the >2.4 keV region reached a much higher 398

relative peak than the second, later burst in the >2.4 keV band. 399

The current rise time was slower than on the lower aspect ratio, 400

with the current reaching its peak at 210 ns after the start 401

of the current. The first X-ray burst in the >2.4 keV region 402

followed soon after, beginning at approximately 220 ns and 403

radiating up to 245 ns. The second burst in the >2.4 keV band 404

began radiating much later, at about 280 ns, and continued 405

radiating up to 300 ns. Unlike in the lower aspect ratio load, 406

the first burst was much more intense than the secondary burst, 407

reaching a much higher relative maximum peak. This is likely 408

due to the additional mass imploded, as Shot# 1250 was more 409

massive than Shot# 1249. There was a large break between 410

the two distinct peaks, from 245 to 280 ns, in which the load 411

was not radiating, or radiating very little, in the >2.4 keV 412

band. However, the load continued to radiate in the >1.4 keV 413

band consistently from 225 ns to 315 ns, reaching relative 414

peaks at 235 ns and 285 ns, which corresponded to the relative 415

maximum peaks in the >2.4 keV band as well. 416

The non-LTE modeling of L-shell spectra of Cu and Zn 417

from MAIZE Shot# 1250 [Fig. 4(b)] revealed an electron 418

temperature of 360 eV and density of 5 × 1019 cm−3, and the 419

evidence of optically thick Cu 3C and Zn 3C Ne-like lines 420

near the anode, with similar parameters (Te = 350 eV and 421

Ne = 3 × 1019 cm−3) and a less optically thick Cu 3C line near 422

the cathode. The comparisons with the Zebra results from [7] 423

will be given in Section VI. 424

We see a small burst early in time, from 75 to 150 ns from 425

the start of the current. Once again, this less intense, early 426

X-ray burst in the >1.4 keV band corresponds to the formation 427

of the precursor column (see Fig. 5). Again, once the precursor 428
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Fig. 3. Side-by-side comparison of shadowgraphy images and WADM modeling from MAIZE Shot# 1249 show the implosion evolution in time from the
start of current. The central precursor column is highlighted with a ①, while the standing shocks are labeled with a ②. Note the drop in background brightness
at the 102-ns mark.

column has accumulated enough mass, a portion of the current429

begins to flow through the column, resulting in low levels of430

radiation. It can also be observed that standing shocks form431

around the 74-ns point; however, these seem to have dissolved432

by the 104–114-ns point. This is an interesting phenomenon,433

as these standing shocks have not been observed in DPWAs434

of this high aspect ratio on the Zebra generator, as the wide435

array width makes it difficult for the global magnetic field to436

penetrate into the interior of the array, causing the mass to437

accumulate along the saddle points [6]. While the shocks are438

short-lasting, their formation indicates that the global magnetic439

field was able to penetrate the interior of the load during 440

the current rise. This is likely due to the lower current and 441

energy of the MAIZE machine, as the current going through 442

each plane created magnetic fields that operated, somewhat, 443

independently of each other. Once the current was suitably 444

high, however, this seemed to have dissolved the standing 445

shocks as the magnetic fields from each plane were joined into 446

one global magnetic field. This has likely not been observed on 447

the Zebra generator for this high value of aspect ratio, as the 448

high current and energy of the Zebra generator do not allow 449

for this to occur on higher aspect ratio loads, as it does for 450

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 12,2022 at 19:41:24 UTC from IEEE Xplore.  Restrictions apply. 



BUTCHER et al.: CHARACTERISTIC EFFECTS OF PULSED POWER GENERATORS OF DIFFERENT ARCHITECTURE 2595

Fig. 4. (Color online). Brass DPWA, φ = 2.33, MAIZE Shot# 1250 (8/8, interplanar gap = 3 mm, interwire gap = 1 mm, and array mass = 76 μg/cm).
(a) PCD signal (dark red) shows radiation in the >2.4 keV region, while the SiD signal (purple) shows the radiation signal in >1.4 keV spectral band.
Current (blue) rise time was 200 ns with the main implosion occurring at 220–245 ns and a smaller, secondary implosion occurring at 280–300 ns from
the start of current. Red dots correspond to moments when a shadowgraphy image was taken. (b) One-dimensional spatially resolved, time-integrated X-ray
spectra are compared with theoretical modeling to find plasma conditions of Te = 360 eV and Ne = 5 × 1019 cm−3 near the anode and Te = 350 eV and
Ne = 3 × 1019 cm−3 near the cathode.

low- and mid-range aspect ratios. The WADM modeling451

showed a good correlation with the formation of the precursor452

column, as it demonstrates an increase in the mass accumula-453

tion along the central axis beginning around the 74-ns point454

(see Fig. 5).455

C. Total Radiated Energy Output Analysis456

The X-ray yields of the imploded DPWAs were approxi-457

mated by integrating the signals from the absolutely calibrated458

PCD over the entire duration of emission and assuming 459

isotropic radiation into 4π steradians. The anisotropy of 460

total X-rays for DPWAs was previously found to be small 461

(∼10%–20%) for similar DPWA configurations [27]. The 462

total X-ray yield in >2.4 keV region for the lower aspect 463

ratio (MAIZE Shot# 1249 and φ = 1.67) brass DPWA was 464

measured to be ∼0.53 J, while for the higher aspect ratio 465

(MAIZE Shot# 1250 and φ = 2.33) it was measured to be 466

∼0.77 J (see Table I). 467
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Fig. 5. Side-by-side shadowgraphy images and WADM simulations from MAIZE Shot# 1250 show the implosion evolution in time from the start of current.
The central precursor column is highlighted with a ①, while the standing shocks are labeled with a ②. Note the drop in background brightness at the 74-ns
mark.

Recent data from [14] presented implosions of high-atomic-468

number W and low-atomic-number Al DPWAs on the MAIZE469

LTD. The data on Al and W DPWAs was chosen to represent470

similarly low- to mid-ranging aspect ratio DPWAs (φ =471

0.58 for Al and φ = 1.05 for W) to MAIZE Shot# 1249.472

In [14], the W DPWA was found to be the highest radiator of473

X-rays in the >2.4 keV band, with an estimated total output of474

1.6 J, while the Al DPWA was found to be the lowest radiator475

(amongst DPWAs) with a total >2.4 keV X-ray output energy476

of 0.067 J. By comparing the X-ray outputs in [14] with the477

data from brass DPWAs in this work, it was found that the478

total radiated energy in the >2.4 keV band increases with479

atomic number. Low-atomic-number Al produced the lowest480

yield, mid-atomic-number brass produced the next highest, and 481

high-atomic-number W produced the highest yield. 482

V. INDUCTANCE MODELING OF BRASS DPWAs ON THE 483

UM MAIZE LTD GENERATOR 484

As the UM MAIZE LTD generator is a low-impedance 485

machine (0.1 �), the changes in partial self-inductance of 486

the imploding region of the load (the wire array) throughout 487

the pinching process can drastically affect the current trace. 488

A better understanding of how the pinching process affects 489

the current will help to better optimize future loads on the 490

UM MAIZE LTD, as well as other low-impedance pulsed 491

power drivers, both existing and future. The dependence of 492
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the current trace on the load inductance can be exploited to493

allow us to extract information about the time evolution of the494

inductance of a load from a measurement of current. This is495

done by simulating a current pulse through a static load of496

equal inductance to the load, once the load has entered the497

plasma phase, but prior to implosion, and then comparing that498

with the measured current trace. The time at which the load499

enters the plasma phase can be seen on the measured current500

trace as a “notch” in which the slope of the measured current501

trace lowers, around 50–60 ns after the start of the current.502

This method is discussed in detail in [23] and was revised503

in [14] to better account for the loss in power associated504

with the mechanical energy driving the load implosion. The505

calculations in this article use the revised methods described in506

[14], in which the initial inductance calculation is iterated until507

the difference between the preceding and proceeding iterations508

falls within a designated convergence criterion (in this work,509

the convergence criterion was 0.1 nH).510

Using the calculated initial load inductance and character-511

istic resistance, a simulated current is calculated in which the512

pinch does not occur and the load is static. Originally, the time-513

dependent inductance was calculated by finding the difference514

in the simulated and measured traces, and computing515

L(t) = L(0)
I 2
sim

I 2
meas

(1)516

where L(t) is the effective time-dependent inductance asso-517

ciated with the total driver-load circuit, L(0) is the initial518

inductance of the circuit prior to the start of current, Isim is the519

simulated current pulse, and Imeas is the measured current pulse520

[13], [23]. This method was later revised in [14] to account521

for the power associated with the mechanical energy driving522

the load implosion [28]. A modified calculation was then523

implemented to solve for the inductance iteratively, to account524

for this energy-transfer mechanism. In this method, the initial525

guess for L(t) is calculated in the previous manner, but the526

notation is changed to allow for future iterations; so L(t) then527

becomes528

L(t) = L0 I 2
sim_0

I 2
meas

= 2E0

I 2
meas

(2)529

where E0 is the energy stored in the magnetic field. Then,530

we calculate the implied change in the electromagnetic energy531

stored in the cavity as a function of time532

�E(t) = −1

2

∫
d Li

dt
I 2
measdt (3)533

and L is then recalculated by534

Li+1(t) = 2(E0 + �E(t))

I 2
meas

(4)535

to get the next iteration. The inductance is then calculated536

by comparing Li+1(t) and Li (t), finding the maximum error537

over the interval of interest, and continuing to iterate with (3)538

and (4) until the error falls below the specified convergence539

criterion (0.1 nH).540

A. MAIZE Shot# 1249, Brass DPWA, φ = 1.67, 541

Time-Resolved Inductance Modeling 542

As is shown in Fig. 6, the relative maxima in the inductance 543

showed a good correlation with the timing of X-ray bursts. The 544

inductance begins to rise sharply around 90 ns after the start 545

of the current, coinciding with the formation of the standing 546

shocks. The first relative maxima of 4 nH are reached at 547

approximately 125 ns after the start of the current, which 548

corresponds well to the first, less intense X-ray burst in the 549

>1.4 keV band, and the formation of the precursor column. 550

Similar to the X-ray bursts, the inductance also reached two 551

relative maxima at 220 and 255 ns. The first inductance 552

peak of the main bursts, occurring at 225 ns, reached an 553

overall maximum of 8.9 nH, while the second inductance 554

peak reached a relative maximum of 8.7 nH at 255 ns. 555

Typically, the peak inductance correlates with the strength of 556

the pinch, which coincides with the intensity of the X-ray 557

burst, as the inductance is directly correlated with the effec- 558

tive current carrying radius. A smaller pinch radius typically 559

correlates to a hotter and denser plasma and a higher X-ray 560

output. It should be noted that, while both peaks of the main 561

X-ray bursts reached approximately the same peak amplitude, 562

the first X-ray burst (occurring at 225 ns) had a much 563

longer duration of X-ray emission than the proceeding, final 564

burst, making for a higher overall X-ray flux, thus it makes 565

sense that the overall maximum inductance peak occurred 566

simultaneously with the first peak of the main X-ray burst 567

at 225 ns. 568

B. MAIZE Shot# 1250, Brass DPWA, φ = 2.33, 569

Time-Resolved Inductance Modeling 570

From Fig. 7, we can see that the higher aspect ratio, 571

φ = 2.33, brass DPWA MAIZE Shot# 1250 followed a 572

similar inductance time-development as the lower aspect ratio, 573

φ = 1.67, and MAIZE Shot# 1249. In MAIZE Shot# 1250, the 574

inductance began rising sharply at 90 ns, around the time when 575

the precursor column began to form. The inductance reached 576

its first relative maximum of 5.3 nH at 125 ns, around the 577

time when the precursor column fully formed. The inductance 578

then lowered and remained nearly constant before rising again 579

for the main pinch. During the first X-ray burst of the main 580

pinch, at approximately 230 ns, the inductance reached a 581

short-lived relative maximum of 7.5 nH at 230 ns, before 582

quickly rising to its overall maximum of 7.8 nH at 245 ns, 583

which correlated well in time to the main X-ray burst. The 584

inductance then decreased before reaching its final relative 585

maximum of 6.6 nH at 280 ns, coinciding with the final, less 586

intense X-ray burst. It is interesting that the lower aspect ratio 587

MAIZE Shot #1249 reached a higher maximum inductance 588

of 8.9 nH, almost 1 nH higher, than the maximum reached 589

by the higher aspect ratio MAIZE Shot #1250, despite the 590

X-ray burst being of lower intensity than the main x-ray 591

burst of MAIZE Shot #1250. While this phenomenon is not 592

fully understood, it could have been caused by a nonuniform 593

plasma column in Shot #1249, where a region of the plasma 594

column may have reached a smaller radius, causing a spike 595

in the inductance, while Shot #1250 may have had a more 596
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Fig. 6. (Color online). Inductance calculations from brass DPWA MAIZE Shot 1249. (a) Comparison of simulated current (blue) to the experimentally
measured current (orange). (b) Time-dependent load plasma region inductance throughout the implosion (dark blue), plotted with >1.4 keV (purple) and
>2.4 keV (dark red) X-ray signals.

uniform radius throughout the pinch, causing it to be more597

emissive of >2.4 keV radiation, but not to reach as high of598

an average inductance. While unconfirmed, the theory of an599

asymmetric pinching column during the implosion for MAIZE 600

Shot # 1249 could have been caused by the early development 601

of one plane beginning to implode sooner than the other 602
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Fig. 7. (Color online). Inductance calculations from brass DPWA MAIZE Shot 1250. (a) Comparison of simulated current (blue) to the experimentally
measured current (orange). (b) Time-dependent load plasma region inductance throughout the implosion (dark blue), plotted with >1.4 keV (purple) and
>2.4 keV (dark red) X-ray signals.

(this can be observed in Fig. 3, as the precursor column603

appears to be “bent” more toward one imploding plane).604

VI. CONCLUSION605

To expand upon previous work with low- and high-atomic-606

number DPWAs on the MAIZE generator, mid-atomic-number607

brass DPWAs were imploded in order to get a more com- 608

plete understanding of the radiative properties of metals with 609

varying atomic numbers imploded on the low-impedance 610

MAIZE LTD, in which it was found that the energy 611

radiated in the >2.4 keV band increased with atomic 612

number. 613
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WADM modeling on the brass DPWAs on MAIZE showed614

a good correlation with shadowgraphy images and radi-615

ation bursts, as did previous WADM modeling on brass616

DPWAs on the Zebra machine. Spectral modeling of the617

brass DPWAs on MAIZE revealed relatively uniform elec-618

tron temperatures on the order of 360 eV and a density of619

5 × 1019 cm−3, which is cooler than similar loads on the Zebra620

generator (400–450 eV), but on a similar order of density621

(1019 cm−3) [7]. This cooler plasma temperature on MAIZE622

is due to the lower maximum current (∼500 kA on MAIZE623

versus ∼1 MA on Zebra). However, the most intense L-shell624

Cu and Zn lines were optically thick in experiments on both625

Zebra and MAIZE.626

These results demonstrate many significant findings. The627

first is that the overall physical processes of DPWA implosions628

(development of standing shocks, precursor development, radi-629

ation burst, and primary implosion) are consistent over a630

variety of various metals, and across different MA-class drivers631

of different architectures [7], [14]. Second, the tendencies632

to radiate from non-LTE L-shell emission as a function633

of atomic-number are similar between MAIZE and Zebra,634

from measurements of X-ray energy in several bands. Lastly,635

an electrical, rather than optical, diagnostic has been developed636

on MAIZE to estimate the plasma region inductance through-637

out a wire array pinch, which accurately captures pinch timing,638

and is somewhat informative on pinch strength (verified by639

optical diagnostics over a variety of DPWA dimensions and640

materials), enabling future experiments designed to investigate641

X-ray emission amplitude and duration to be fielded with642

minimal and easily realizable diagnostic capabilities. These643

findings help to show that wire array experiments across both644

larger and smaller university-scale pulsed power facilities yield645

similar results, which, in turn, demonstrates that experiments646

on university-scale machines, like these, could help to inform647

experimental designs on larger facilities.648
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