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In this paper, we present experimental results on axially magnetized (Bz¼ 0.5 – 2.0 T), thin-foil

(400 nm-thick) cylindrical liner-plasmas driven with �600 kA by the Michigan Accelerator for

Inductive Z-Pinch Experiments, which is a linear transformer driver at the University of Michigan.

We show that: (1) the applied axial magnetic field, irrespective of its direction (e.g., parallel or anti-

parallel to the flow of current), reduces the instability amplitude for pure magnetohydrodynamic

(MHD) modes [defined as modes devoid of the acceleration-driven magneto-Rayleigh-Taylor (MRT)

instability]; (2) axially magnetized, imploding liners (where MHD modes couple to MRT) generate

m¼ 1 or m¼ 2 helical modes that persist from the implosion to the subsequent explosion stage; (3)

the merging of instability structures is a mechanism that enables the appearance of an exponential

instability growth rate for a longer than expected time-period; and (4) an inverse cascade in both
the axial and azimuthal wavenumbers, k and m, may be responsible for the final m¼ 2 helical struc-

ture observed in our experiments. These experiments are particularly relevant to the magnetized

liner inertial fusion program pursued at Sandia National Laboratories, where helical instabilities

have been observed. Published by AIP Publishing. https://doi.org/10.1063/1.5017849

I. INTRODUCTION

Recent experiments investigating axially magnetized,

thin-foil cylindrical plasmas driven by the 1-MA Michigan

Accelerator for Inductive Z-Pinch Experiment (MAIZE)

facility at the University of Michigan1,2 have demonstrated

helical instability structures with azimuthal mode numbers

m¼ 0, 1, or 2. These structures are discrete magnetohydro-

dynamic (MHD) modes that persist when coupled to the

acceleration-driven magneto-Rayleigh-Taylor (MRT) insta-

bility. By “MHD modes,” we are referring to modes devoid

of the acceleration-driven MRT mechanism. Examples of

MHD modes include the current-driven sausage (m¼ 0),

kink (m¼ 1), and higher order helical modes (m� 1). The

foil experiments conducted on MAIZE are relevant to the

magnetized liner inertial fusion (MagLIF) program at Sandia

National Laboratories, where an axially magnetized, laser

preheated, deuterium fusion fuel is adiabatically compressed

to thermonuclear conditions by an imploding cylindrical

metal tube (or “liner”) driven with �19 MA by the Z

Machine.3–7 The large currents and accelerations required to

implode the liner render the outer surface of the liner unsta-

ble to both the MRT instability and to the sausage (m¼ 0)

and helical (m� 1) MHD modes; moreover, the MHD modes

are likely coupled to the MRT instability.8 Previous investi-

gations on the stability of MagLIF liners observed

azimuthally correlated structures when no axial magnetic

field was applied9,10 and helically oriented structures when

an axial magnetic field of 7–10 T was pre-imposed.11,12

Furthermore, the magnetized stagnation column within the

fuel develops a helical structure,6,7 suggesting that the heli-

cal instabilities in the liner may feed through to the fuel13,14

and/or that the magnetized plasma in the fuel itself is unsta-

ble to helical modes during the strong deceleration phase,

when the liner’s inner surface becomes MRT unstable.8

Relative to the large 27-MA Z facility, investigating these

instabilities at �1 MA on university-scale pulsed power

machines like MAIZE15 offers several advantages, including

reduced costs, higher shot rates, and a less destructive debris

environment for developing new diagnostic techniques.

However, because of the reduced driver current, imploding an

initially solid liner on MAIZE requires a sub-micron wall

thickness (the MagLIF liners on Z have a wall thickness of

approximately 500lm). Thus, a new platform was developed

at the University of Michigan to experimentally investigate

cylindrical MHD and MRT instabilities on MAIZE using

aluminum liners with a wall thickness of 400 nm.16 This plat-

form accommodates three experimental configurations, which

were designed to investigate: (1) MHD instabilities in a

non-imploding geometry, where the plasma acceleration, and

thus the coupling to the MRT instability, is minimized; (2)

MHD-MRT coupled instabilities in an imploding geometry;

and (3) the effects of the magnitude and direction of an applied

axial magnetic field on a seeded m¼ 1 kink instability.

The first set of experiments demonstrated that non-

imploding liners with no pre-imposed axial magnetic field

developed an m¼ 0 sausage instability, whereas liners that

Note: Paper GI3 5, Bull. Am. Phys. Soc. 62, 113 (2017).
a)Invited speaker.
b)Current address: Michigan State University, East Lansing, Michigan 48824,

USA.
c)Current address: Lockheed Martin, Palmdale, California 93599, USA.
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were magnetized with a small axial magnetic field of

Bz¼ 1.1 T (small compared to the peak azimuthal field of

Bh¼ 30 T) developed an m¼ 2 helical instability.1

In the second set of experiments, it was found that the

m¼ 0, 1, and 2 modes persisted upon implosion, despite the

coupling to the MRT instability and the rapid increase in the

azimuthal magnetic field.2 By systematically varying the

axial magnetic field from one shot to the next, these investi-

gations demonstrated that the azimuthal mode number

tended to increase in a discrete fashion (with at most one or

two dominant modes) from m¼ 0 to m¼ 2 as the field was

increased from 0 T to 2.0 T.

The third set of experiments showed that imposing an

m¼ 1 helical perturbation along the liner’s inner surface

yielded an m¼ 1 instability with the same helical pitch as

the perturbation despite the magnitude and orientation of the

applied axial magnetic field. These seeded modes thus domi-

nated over the driven modes that arose more naturally in the

first and second experimental configurations. These experi-

ments also demonstrated that the axial magnetic field signifi-

cantly reduced the instability amplitude only when the

helical twist of the global magnetic field external to the liner

(with combined Bz and Bh components) was in the opposite

sense to that of the plasma helix.

In this paper, we present several new experimental

results for thin-foil, cylindrical liners on MAIZE. We first

show that the applied axial magnetic field, irrespective of its

direction (e.g., parallel or anti-parallel to the flow of current),

reduces the instability amplitude for pure MHD modes (i.e.,

modes devoid of the MRT instability8). We then show that

liners with applied fields of Bz¼ 0.5 – 0.8 T generate an

m¼ 1 helical mode that persists not only during the implo-

sion phase but also during the subsequent stagnation and

explosion phases; additionally, these data are compared with

the m¼ 2 helical mode that was previously found to persist

for applied fields of Bz¼ 1.1 – 2.0 T.2 Finally, using a 12-

frame shadowgraphy system, we track individual instability

bumps during the evolution of a single shot and demonstrate

two important effects of mode merging: (1) we show that the

merging of adjacent instability bumps may be used to

explain an unexpected recurrence of exponential instability

growth at late times and (2) we discuss how the mode merg-

ing of helical features may explain why an m¼ 2 mode is

observed in the experiments when higher order modes

(m> 2) are the first to destabilize in an analytical, ideal

MHD, linear theory;8 here, we also present new experimental

evidence of helical mode merging.

II. EXPERIMENTAL CONFIGURATION

The experiments presented herein were performed on

the Michigan Accelerator for Inductive Z-Pinch Experiments

(MAIZE), which is a 1-MA linear transformer driver (LTD)

at the University of Michigan.15,17,18 The maximum charge

voltage on MAIZE is 6100 kV. However, for the inductive

liner loads used in these experiments, the charge voltage was

reduced to a nominal 670 kV to mitigate damage to the

capacitors and insulators. This resulted in typical peak cur-

rents of 580 kA and quarter-wavelength risetimes of 250 ns,

which were measured using B-dot probes in the transmission

line. At a charge voltage of 670 kV, MAIZE stores about

8 kJ of electrical energy in its 80 capacitors, which are dis-

tributed around the perimeter of the machine. The MAIZE

LTD and load hardware are shown in Figs. 1(a) and 1(b).

The liner loads were fabricated using a rectangular

(2.2 cm� 1.2 cm) aluminum foil (400-nm thick) wrapped

around a cylindrical support structure, where the support

structure consisted of two conducting ends (outer diameter,

OD¼ 6.55 mm) and a dielectric center, which was either

solid-cylindrical (OD¼ 6.35 mm) or dumbbell-shaped

(OD¼ 1–2 mm)16 [see Fig. 1(c)]. The solid-cylindrical sup-

port structure was used to prevent the foil from imploding,

which enabled an investigation of the intrinsic MHD modes

in the absence of the acceleration-driven MRT instability.1

The dumbbell-shaped support structure was used to allow

the foil to implode so that the MHD modes could couple to

the MRT instability.2

The liner loads were axially magnetized to Bz¼ 0.5 – 2.0 T

using two 80-turn Helmholtz-like coils19 driven by a separate

and independent capacitor bank (1.2 mF, 2.0 ms quarter-

wavelength risetime). The two coils were separated by

2.54 cm and were situated outside of the return current can,

positioned above and below the liner region to generate a spa-

tially uniform axial magnetic field over the entire liner region

(see Ref. 20 for magnetic field diffusion simulations in

ANSYS Maxwell). The long risetime of the Bz coils permitted

the axial magnetic field to diffuse uniformly through the load

hardware and liner load prior to discharging MAIZE; in each

experiment, the MAIZE discharge was initiated at the point

when the axial magnetic field reached its peak value.

The primary diagnostic to investigate instability growth

was a 12-frame intensified charge coupled device (ICCD)

FIG. 1. (a) Cutout of the MAIZE LTD and transmission line, showing (1)

the energy storage section, consisting of 40 spark-gap switches and 80 40-nF

capacitors, (2) the vacuum transmission line, and (3) the load region. In (b),

the load consists of a vertical, co-axial vacuum transmission line, with the

cylindrical anode surrounding the central cathode stalk. The cylindrical liner

load sits atop of the cathode stalk. The coaxial return-current can is slotted

to enable diagnostic access to the plasma. Helmholtz-like coils surround the

load to generate axial magnetic fields of Bz¼ 0.2 – 2.0 T. In (c), the liner

support structures are shown for (1) non-imploding and (2) imploding con-

figurations. For the final configuration (3), the 400-nm thick rectangular alu-

minum foil is wrapped around the support structure, making contact with the

conducting ends.
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fast framing camera, which captured liner self-emission

images that were time-integrated over a 10-ns window and

line filtered at 532-nm. For some of the shots, the framing

camera was coupled to a 12-frame laser shadowgraphy sys-

tem,1 where a 532-nm, 2-ns pulse-length Nd:YAG laser was

temporally separated into 12 beams. Using the laser back-

lighter resulted in a thin, dark band that outlined the self-

emitting regions of the plasma, which was due to laser light

being refracted out of the optical system (see Fig. 2). This

band was particularly useful for tracking instability bumps

early in the discharge when the liner was weakly self-

emitting and later in time when instability bumps began to

merge. The inter-frame time of the diagnostic was set to

10 ns when using the laser backlighter and to 25 ns when col-

lecting self-emission only.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Instability development in non-imploding liners

The instability development of pure MHD modes (e.g.,

modes devoid of the acceleration-driven MRT instability)

in liners utilizing the non-imploding support structure

was investigated for three axial magnetic field values,

Bz¼ 0 T,þ1.1 T, �1.1 T. Note that the electrical current

flows in the -z direction. A summary of the experimental

configuration and results is given in Table I. Figures 2(a) and

2(b) show shadowgraphy images of non-imploding liners for

(a) Bz¼ 0 T and (b) Bz¼þ1.1 T. In the Bz¼ 0 T experiments,

the liners developed azimuthally symmetric instability struc-

tures that are identified as the m¼ 0 sausage instability. In

the axially pre-magnetized experiments, the liners developed

helically oriented instability structures that are identified as

the m¼ 2 helical instability, consisting of two intertwined

helices that spiral in the general direction of the global,

external magnetic field.1 When the axial magnetic field was

reversed, the tilt of the self-emission striations also reversed.

Examining the plasma radius showed a nearly constant

velocity expansion,20 indicating that the acceleration, and

thus the coupling to the MRT instability, was minimized.

Therefore, these instabilities were classified as pure MHD

modes.

Using either the laser shadowgraphs or the self-emission

images (depending on whether or not the laser backlighter

was used), the instability amplitude from each image was

obtained by finding the left and right radial positions of the

liner as a function of the axial position, z. The left and right

instability amplitudes were then characterized by the stan-

dard deviations of the positions, rL and rR, which were mul-

tiplied by a factor of
ffiffiffi

2
p

to approximate the amplitude of a

sine wave; the left and right amplitudes are therefore given

by AL;R ¼
ffiffiffi

2
p

rL;R. The final value for the instability amplitude

was taken as the mean of the left and right amplitude values,

A ¼ ðrL þ rRÞ=
ffiffiffi

2
p

, and the uncertainty E was estimated using

the difference between these values, E ¼ jrL � rRj=
ffiffiffi

2
p

.

In Fig. 3, the instability amplitude as a function of time is

presented. The shadowgraphy data [Fig. 3(a)] have larger

amplitudes when compared to the self-emission only data

[Fig. 3(b)]. This is simply because the shadowgraphy bound-

ary is at a larger radius than the self-emission boundary.

Despite this approximately constant offset difference, the two

methods resulted in very similar growth rates (see Table I).

To measure the instability growth rate, we fit only the

exponentially growing regions (identified on a semi-log plot)

using the equation A ¼ A0expðctÞ, where A is the instability

amplitude at time t, A0 is the fitted amplitude at t¼ 0 (corre-

sponding to the start time of the current), and c is the insta-

bility growth rate. The amplitude A0 is not the true

instability seed amplitude at t¼ 0 but rather a parameter that

characterizes the amplitude of the structures that seeded the

observed instability. The fitted curves excluded early-time

data points (where the amplitude change from image-to-

image was negligible) and late-time data points (where

saturated/non-exponential instability growth was observed).

From these fits, summarized in Table I, we see that the axial

magnetic field slightly reduced the instability growth rate

when compared to the Bz¼ 0 T case (with the exception of

shot 1189, discussed below); nevertheless, the cumulative

effect of applying the axial magnetic field is that the overall

instability amplitude is significantly reduced when compared

to the Bz¼ 0 T case (see Fig. 3).

FIG. 2. Shadowgraphy images of liner-plasmas for (a) non-imploding,

Bz¼ 0 (shot 1189, 326 ns), (b) non-imploding, magnetized (Bz¼ 1.1 T, shot

1190, 334 ns), and (c) imploding, magnetized (Bz¼ 0.8 T, shot 1168, 294 ns)

shots. The shadowgraphy boundary is the thin, black line outlining the self-

emitting plasma. The location of a sample dark self-emission striation is

indicated by the black line. The approximate initial liner position is shown

in white. The current is in the downward (–z) direction. The use of a laser

line filter resulted in images made from 532-nm light; the brightness corre-

sponds to the incident energy on the camera.

TABLE I. Summary of the experimental configuration and results for non-

imploding liners. The shadowgraphy column indicates whether the laser

shadowgraphy system1 was used. The instability growth rate was measured

by fitting an exponential function to the time range indicated in the timing of

the fit column.

Shot

No.

Bz

(T)

Growth rate

(1/ls)

Shadowgraphy Imax

(kA)

Timing of fit

(ns)

1189 0 7.2 6 0.3 Yes 560 245–345

1209 0 10.8 6 0.5 Yes 560 120–220

1210 0 11.9 6 0.3 No 560 175–325

1211 0 12.8 6 0.3 No 540 170–320

1206 �1.1 9.0 6 0.5 Yes 580 210–290

1207a �1.1 … Yes 590 …

1208 �1.1 9.9 6 0.7 Yes 570 125–225

1212 �1.1 8.9 6 0.2 No 590 245–345

1213 �1.1 7.7 6 0.3 No 580 190–390

1190 þ1.1 8.0 6 0.6 Yes 570 255–325

1214 þ1.1 8.5 6 0.7 No 580 225–350

1215 þ1.1 6.9 6 0.5 No 570 215–315

aAmplitude data for shot 1207 in Fig. 3(a) did not have sufficient points with

exponential growth to accurately measure a growth rate.
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Shots with data after 300 ns showed saturation in the

instability development (see Fig. 3). For the shadowgraphy

diagnostic, amplitude data for both axially magnetized cases

actually decreased in time, as shown in Fig. 3(a), while for

the self-emission only diagnostic, the saturation was charac-

terized by an algebraically increasing instability growth (i.e.,

the amplitude growth is linearly proportional to time), as

shown in Fig. 3(b). This saturation occurs later in time for

the axially pre-magnetized experiments (between 350 and

400 ns) than for the Bz¼ 0 T experiments (�325 ns), which

may be attributed to the smaller ratio of instability amplitude

to axial wavelength for the magnetized liners (see Sec.

III C). Note that this saturation likely explains the slightly

smaller growth rate for the Bz¼ 0, m¼ 0, shot 1189 data,

which were captured later in time (t¼ 245 – 345 ns) when the

saturation and instability merging process had already

begun.

Changing the direction of the axial magnetic field from

Bz¼�1.1 T (parallel to current) to Bz¼þ1.1 T (anti-parallel

to current) did not have a significant effect on the instability

growth rate (see Table I); however, differences were

observed in the instability amplitude. Data with the axial

magnetic field directed anti-parallel to the flow of current

tended to have a slightly larger instability amplitude when

compared to the parallel orientation (see data for shots 1190

and 1214 in Fig. 3) with the notable exception of shot 1215

(Bz¼þ1.1 T), which had a comparable instability amplitude

to shot 1212 (Bz¼�1.1 T). Interestingly, the peak current,

and thus the azimuthal magnetic field which ultimately

drives the instabilities, was larger for shot 1212 (590 kA)

than for shot 1215 (570 kA). Taking this into account, along

with the observation that shots 1190 and 1214 (Bz¼þ1.1 T)

had noticeably larger instability amplitudes, suggests that the

instability development may indeed be slightly larger when

the axial magnetic field is directed anti-parallel to the flow of

current. In ideal MHD, there is no difference in linear growth

rates between an axial field that is parallel or anti-parallel to

the direction of current flow; however, in more sophisticated

MHD models (e.g., models that include the Hall term in the

generalized Ohm’s law21), the growth rates can depend on

whether the axial field is parallel or anti-parallel to the direc-

tion of current flow. The data presented here motivate future

investigations to determine whether this effect is due to the

stochastic nature of instability development or if it originates

from a physical mechanism dependent on the orientation of

the applied axial magnetic field.

To interpret the experimental data, we used the Weis-

Zhang-Lau (WZL) theory8 to calculate the instantaneous the-

oretical sausage and helical growth rates. These are pre-

sented in Fig. 4, which shows contour plots of the

instantaneous growth rate as a function of time for azimuthal

mode numbers ranging from m¼�12 to m¼þ12 and for

axial magnetic fields of (a) Bz¼ 0 T and (b) Bz¼ 1.1 T.

These calculations require values for the plasma radius,

instability wavelength, plasma density, liner thickness, and

instantaneous magnetic field, which were either measured

from the experiment or estimated using reasonable parame-

ters based on simulations.20 Despite the observation that the

instability wavelength changes over time, its value was fixed

at k¼ 0.3 mm, which is the wavelength that first appears in

the experiments. This value could incorporate the time-

changing effects observed in Sec. III C; however, doing this

would primarily change the numerical values for the growth

rate and unnecessarily complicate the interpretation of the

growth rate plots presented in Fig. 4. Other model parame-

ters include: (a) the liner radius (fixed at a radius of 3.5 mm

for ease of calculation); (b) the magnetic field (determined

from the plasma radius in the experimental images and from

the driving current pulse, which was approximated by a half-

wave sinusoidal function with a peak current of 580 kA and

a base-to-peak risetime of 250 ns); (c) the liner thickness

(estimated to be about 0.2 mm); and (d) the plasma density

(set to 4.5 kg/m3, which was obtained from interferometry

measurements of electron density at the edge of the

plasma20). Modifying these parameters primarily affects the

absolute numerical value of the growth rates for a given

point in time; it does not significantly affect the relative

trends observed with our analysis.20

As shown in Fig. 4(a), when there is no axial magnetic

field, the most unstable mode is the m¼ 0 sausage mode for

all times, and the negative m modes have the same growth

rate as the positive m modes. These results are intuitively

expected because the m¼ 0 mode requires no bending of the

azimuthal magnetic field and because, in the absence of an

axial magnetic field, a plasma helix spiraling up or down

experiences the same magnetic tension. Thus, we would

FIG. 3. Experimental instability amplitudes measured using (a) the laser

backlighter and (b) self-emission only. The plots show exponential curves,

fit only to the exponentially increasing time periods (identified on a semi-log

plot), which give measurements of the instability growth rates, summarized

in Table I.
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expect the m¼ 0 mode to dominate, which was indeed the

mode observed in the experiment [Fig. 2(a)].

In Fig. 4(b), we present the dramatic effect of adding a

relatively small axial magnetic field of 1.1 T (the peak azi-

muthal field for these calculations was 33 T). First, the

regions of high growth rate shift to positive m modes, an

intuitive consequence as these modes have a smaller mag-

netic tension when compared to the negative m modes. We

also see that there is a region of complete stability, where all

azimuthal modes are stable for t< 46 ns. At t¼ 46 ns, the

m¼ 9 mode is the first to destabilize. Interestingly, this

mode destabilizes before even higher order modes with

m> 9. As determined in the experiment, the first detectable

instability bumps are observed around �120 ns. Using Fig.

4(b), we see that at t¼ 120 ns, the m¼ 4 mode has the largest

growth rate. Assuming that the MHD modes may develop at

t¼ 120 ns, we would expect the m¼ 4 mode to dominate.

Helical mode merging, discussed in Sec. III D, may also

explain this dominance of the m¼ 4 mode at t¼ 120 ns,

seeded from the m¼ 8 mode at t¼ 46 ns, as well as the

experimental observation of an m¼ 2 mode at the final stage,

despite higher order modes becoming the first to de-stabilize

in the theory.

B. Discrete m 5 1 and m 5 2 helical modes in
imploding liners

Using the dumbbell-shaped support structure enabled

the liners to undergo complex dynamics, including an implo-

sion (v< 0), stagnation (v � 0, a> 0), and subsequent explo-

sion stages (v> 0), where a and v are the radial acceleration

and velocity vectors.2 A sample shadowgraphy image of a

magnetized liner (Bz¼ 0.8 T) during the implosion is shown

in Fig. 2(c), and a summary of the experimental parameters

is given in Table II. Throughout the implosion stage and

before the stagnation stage, the outer plasma interface was

susceptible to the acceleration-driven MRT instability, which

was found to couple to the MHD modes observed in the non-

imploding geometry in Sec. III A. The important question of

whether the initial MHD helical instability modes persist

during the implosion, when other MRT modes may simulta-

neously develop, is investigated in the remainder of this

section.

The axially pre-magnetized liners revealed tilted self-

emission striations that increased (decreased) in pitch angle

during the implosion (subsequent explosion) stage, when the

plasma radius was decreasing (increasing). These striations

were dark and bright relative to the overall liner self-

emission and were found to connect instability bumps and

necks across the plasma, respectively. Figure 5 shows a rep-

resentative set of contrast-enhanced bright and dark stria-

tions during the implosion stage (Bz¼ 1.1 T, shot 1172) and

a single bright striation during the explosion stage

(Bz¼ 2.0 T, shot 1158); both figures track the same striations

at two different points in time, as indicated in the figure. The

striation pitch angle was measured by taking the slope of a

linear regression fit to the self-emission local minima and

maxima (see the solid black and white lines in Fig. 5), which

were identified using a tracking algorithm.1

To understand the dynamics of the striation angles, we

examine the perturbation for cylindrical MHD modes,

exp imh� ikzð Þ, where m and k ¼ 2p/k are the azimuthal

number and axial wavenumber (with axial wavelength k),

respectively. These modes result in instability structures con-

sisting of m intertwined helices,1 whose helical pitch angle is

found by tracing a perturbation along a constant phase C so

that imh� ikz ¼ C. Differentiating yields the relationship

FIG. 4. (a) and (b) Weis-Zhang-Lau analytical instability growth rate calcula-

tions for non-imploding liners (no MRT coupling) with small wavelength per-

turbations (k¼ 0.3 mm) for (a) Bz¼ 0 T and (b) Bz¼ 1.1 T. These calculations

use a typical current pulse (580 kA peak current, 250 ns base-to-peak rise-

time), a liner thickness of D¼ 200 lm, and a plasma density of n¼ 1020/cm3.

The plot in (b) shows a region in time of 45 ns where all modes are stable. As

time progresses, higher order modes de-stabilize, beginning with the m¼ 9

mode. The m¼ 4 mode has the largest growth rate when the instability bumps

are first resolvable (t¼ 120 ns), indicating that this may be the first mode that

develops in the experiments (see Sec. III D and Fig. 9).

TABLE II. Summary of experimental parameters for imploding liners. The

azimuthal mode number is identified for at least one image in the discharge

using the procedure outlined in Ref. 1.

Shot Bz (T) Azimuthal mode (m) Imax (kA) Image timing (ns)

1166 0.5 1 530 298–348

1168 0.8 1 550 274–314

1172 1.1 2 580 240–290

1169 1.6 2 570 272–292

1158a 2 2 … 308–389

aCurrent trace not available.
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dh=dz ¼ k=m so that the pitch angle along this constant

phase may be determined as follows:8

/ ¼ atan dz=Rdhð Þ ¼ atan m=kRð Þ � m=kR: (1)

Note that the last approximation is applicable for small

angles, such as those measured in these experiments. Thus,

for a helical mode with m and k constant, the helical pitch

angle increases (decreases) as the plasma radius decreases

(increases) during the implosion (explosion) stage of the dis-

charge, consistent with our experimental data. Weis et al.8

showed that this interpretation was also consistent with the

temporal evolution of the helical pitch observed in the

Sandia experiments.11,12

The relationship in Eq. (1) may be used to identify dis-

crete helical modes that vary in radius as the plasma implo-

des and explodes by plotting the measured pitch angles

observed in self-emission against 1=kR, where k and R are

the mean axial wavenumber and plasma radius for a given

image. For each image, the pitch angle was taken as the

mean of all pitch angles from bright and dark striations, with

uncertainty determined using the standard error in the data-

set. The angles are modified by a factor of 2/p to account for

the 3-D structure of the helix.22 The mean wavenumber was

determined using the mean wavelength, calculated by aver-

aging the distances ki between the centers of all adjacent

bumps (both vertically and radially, identified manually),

and the mean radius was determined by averaging the radii

Ri for all distinguishable instability bumps, where Ri is the

distance from the center of an instability bump to the z-axis

(determined using the pre-shot liner shadowgraph). Note that

the uncertainties (estimated using the standard deviation) in

the mean values k and R are much larger than the uncertain-

ties in the individual measurements ki and Ri. In other words,

the errors made in choosing an individual ki and Ri have little

impact on the mean values.

For each image, the self-emission pitch angles were

measured independently of the plasma radii and wavelengths

and were used to generate a scatter plot of the measured

pitch angles against 1/kR (see Fig. 6). The data are plotted

for both the implosion and subsequent explosion stages, and

they are marked in red or black when helical structures with

one (red, m¼ 1) or two (black, m¼ 2) intertwined helices are

present for at least one image during the discharge (the heli-

cal mode identification procedure follows that outlined in

Ref. 1). In Fig. 6, the required one-to-one fits between the

pitch angles and 1/kR for an m¼ 1 and m¼ 2 mode are plot-

ted using red and black lines, respectively (recall that the

helical pitch angle is /¼m/kR; thus, the slope of these lines

is determined by the mode number). Comparing these lines

with the experimental data points in red and black shows an

overall good agreement, indicating the persistence of these
helical modes throughout a period of time that includes
implosion, stagnation, and explosion. It is remarkable that

these structures maintain their coherence/identity throughout

this period since very disparate dynamical processes are

involved. This figure also demonstrates the discrete increase

from m¼ 1 to m¼ 2 due to the increase in the applied axial

magnetic field from Bz¼ 0.8 T to Bz¼ 1.1 T. Increasing the

field beyond Bz¼ 2.0 T is likely to yield even higher order

modes with m� 3; this work is left for future experiments.

C. Mode merging and the recurrence of exponential
growth

A particularly interesting feature of Fig. 3 is the appear-

ance (or recurrence) of an exponentially growing instability

amplitude for over 300 ns, despite the linear theory (which

describes exponential growth in time) being applicable for

only “small amplitude perturbations.” The data in Fig. 3

FIG. 5. Self-emission striations for (a) implosion and (b) explosion data.

The same bright and dark striations are tracked from image to image, show-

ing an increase in the striation angle during the implosion stage and a

decrease in the striation angle during the explosion stage. The direction of

the current density J and azimuthal magnetic field Bh are indicated in (b).

The axial B field is in the þz direction.

FIG. 6. Plot of measured striation angle versus 1/kR, the predicted helical

pitch angle (/¼ m/kR) divided by the azimuthal mode number, m. The

data are plotted in red or black when one or two intertwined helices are

identified1 in the shadowgraphy/self-emission images, respectively. The

data show an overall agreement with the required lines for the m¼ 1 (red,

dashed) and m¼ 2 (black, dashed) modes during both the implosion and

explosion stages of the discharge, indicating the persistence of discrete

helical modes.
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indicate that saturation occurred during the late-time growth of

the instability features (saturation causes the growth rate to

depart from an exponential time dependence). Additionally,

the corresponding image data reveal the merging of instability

bumps, which results in a time-changing wavelength.

Investigating these observations further, we tracked the ratio of

the instability amplitude, A, to wavelength, k (measured using

the plasma boundary, see Ref. 20). This ratio, A=k ¼ kA=2p,

characterizes the applicability of the linear perturbation theory.

When kA is small, the instability growth may be modeled by

linear perturbation theory (recall that the product kA can be

used as the dimensionless expansion parameter in a nonlinear

theory). The linear theory, which yields simple exponential

growth, fails23 if kA > 1, i.e., if A=k > 0:16. The values of

instability wavelength are plotted as a function of time for shot

1189 (Bz¼ 0 T) in Fig. 7(a) and show a discrete increase

between 266 ns and 286 ns, where the wavelength approxi-

mately doubled from k¼ 0.9 mm to k¼ 1.7 mm after synchro-

nous merger events. Figure 7(b) shows enlarged images for the

four frames indicated in Fig. 7(a). The images show the

detailed process of two, smaller wavelength instability struc-

tures merging into a single, larger instability structure.

Using these data, the mechanism for the recurrence of

exponential growth may be qualitatively understood as fol-

lows. First, assume that kA ¼ 1 (or A=k ¼ 0:16) marks the

transition between the linear and nonlinear development of

the instability. The linear perturbation theory is characterized

by exponential growth in perturbations for small A=k. When

the amplitude is no longer small, in particular if A=k > 0:16,

the nonlinear theory must be applied. In Fig. 7(a), we plot the

ratio A=k as a function of time (for the left side of the liner

only), using both the shadowgraphy and self-emission data.

Before the merging process occurs (t< 266 ns), this ratio of

A=k increases to 35% and 23% for the shadowgraphy and

self-emission data, respectively. Both these values are well

beyond the applicability of the linear perturbation theory, and

thus, it appears as though the growth of these modes has tempo-

rarily saturated. This saturation does not last long, however,

due to the merging of instability structures. During this merging

process, the amplitude remains nearly unchanged, but because

the wavelength rapidly increases, the ratio A=k rapidly

decreases to 19% and 10% for the shadowgraphy and self-

emission data, respectively, so that the linear theory might

become applicable again (e.g., the importance of the non-linear

terms in the expansion in kA is reduced) and exponential

growth ensues. After merging (t> 286 ns), the wavelength

remains approximately constant for the remainder of the shot.

Here, an important distinction must be made between

the merging of instability modes and the competition of

modes from an initial spectrum of perturbations. In other

words, one must determine whether adjacent, small wave-

length instability bumps merge to form a single larger bump

or smaller wavelength structures saturate and are overtaken

by longer wavelength modes with a larger saturation ampli-

tude. Using the argument given in the preceding paragraph,

longer wavelength structures should have a larger saturation

amplitude, Asat ¼ 0:16 k; thus, one would expect that, in

both cases, larger wavelength structures should emerge. To

address this distinction, we must consider the dynamics of

instability bumps in addition to the evolution of the power

spectrum of wavelengths. We focus on the Bz¼ 0 T data, par-

ticularly shots 1189, 1210, and 1211, which developed insta-

bility structures with larger amplitudes (Fig. 3) and

wavelengths when compared to the axially magnetized data,

facilitating the identification of instability bump peaks. Shots

1210 and 1211 were particularly useful for this analysis, as

they captured the late time behavior of the m¼ 0 mode (the

latest image times were 400 ns and 445 ns, respectively) and

exhibited multiple merger events throughout the 275 ns

imaging window.

Figure 8 presents a representative dataset from shot

1211, showing (a) the plasma-vacuum interface, (b) the evo-

lution of the instability wavelength, and (c) the wavelength

power spectrum at various times during the discharge. In

Fig. 8(a), the peaks of the instability bumps were found using

the findpeaks algorithm in MATLAB and are marked as tri-

angles in the plot. These peaks are tracked from frame to

frame using the dashed lines, which show multiple two-to-

one merger events. In Fig. 8(b), the wavelength was mea-

sured using a “mean-crossing” method, which determines a

single characteristic wavelength by counting the number of

crossings between the plasma interface and the mean radius

(see Ref. 20). This plot captures the discrete increase in

wavelength as a function of time from k¼ 0.6 mm to 1.1 mm

to 1.9 mm due to the merging events identified in (a). While

the data in Figs. 8(a) and 8(b) argue for mode merging (e.g.,

the peaks of instability bumps move closer together and join,

and the wavelength increases in a discrete fashion), we

must still determine whether these longer wavelength modes

FIG. 7. (a) Instability wavelength and ratio of amplitude to wavelength for

the Bz¼ 0, m¼ 0 sausage mode in shot 1189. The data are plotted for the

left side of the liner, which showed synchronous merger events. The ratio of

amplitude to wavelength is plotted using both the shadowgraphy and self-

emission boundaries. (b) Detailed process of instability bump merging. Data

points marked in red in (a) correspond to the frames in (b). The data show

that during the merging process, a rapid increase in wavelength is accompa-

nied by a rapid decrease in the ratio of amplitude to wavelength, which

allows the subsequent instability growth to remain closer to the linear theory

(albeit with a smaller growth rate due to the increase in wavelength).
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(e.g., k¼ 1.1 mm and 1.9 mm) arise from competition with

other modes. In Fig. 8(c), we plot the power spectrum of

wavelengths of the data in (a) (determined using the Fast

Fourier Transform of the plasma radius with an applied

Hanning window and zero-padding) at times t¼ 220 ns, 295

ns, 370 ns, and 445 ns, and we find that the data are inconsis-

tent with mode competition. First, we see that the dominant

mode at 220 ns (k¼ 0.6 mm) is nearly absent at later times

and has almost completely disappeared at t¼ 295 ns. This is

inconsistent with mode competition, where one would expect

the 0.6 mm mode to continue developing beyond saturation,

although with a smaller growth rate than the longer wave-

length modes that have not yet saturated. Furthermore, the

t¼ 295 ns spectrum shows a dominant peak at 1.2 mm—for

mode competition, this mode must have existed at some

level (along with competing modes) at an earlier time; how-

ever, this was not the case. While the t¼ 220 ns spectrum

indeed shows multiple peaks (with a dominant peak at

0.6 mm), the power spectrum amplitude is nearly zero at

1.2 mm, indicating that this mode did not exist at this earlier

time. Thus, the 1.2 mm wavelength mode must have devel-

oped due to some mechanism other than mode competition,

the other mechanism in this case being the merging of adja-

cent 0.6 mm wavelength bumps to form a 1.2 mm structure.

As we found these observations to be true for all shots con-

sidered (Bz¼ 0 T), we conclude that mode merging is the

dominant mechanism responsible for the increase in instabil-

ity wavelength. We caution that this conclusion is supported

for the observed data (typically with t> 200 ns) and that it is

possible that mode competition could have occurred earlier,

before the instability bumps are resolvable (t< 100 ns).

D. Helical mode merging

The merging process of the instability bumps for the

m¼ 0 MHD sausage mode described in Sec. III C for the

Bz¼ 0 T, non-imploding liner is similar to the merging of

MRT modes,24 as both processes result in an inverse cascade

of the axial wavenumber k. In the case of a well-developed

m¼ 0 structure (e.g., the structures have correlated azimuth-

ally), the azimuthal mode number (m¼ 0) remains unchanged

throughout the merging process. This is not the case for heli-

cal modes, where the merging results in an inverse cascade in

both k and m. This is a necessary geometric effect: consider a

helical perturbation with azimuthal and axial mode numbers

m0 and k0 which undergoes a merging process where adjacent

instability bumps merge in a two-to-one fashion. Since the

azimuthal mode number is interpreted as the number of inter-

twined helices,1 this merging corresponds to the merging of

individual helical perturbations. Thus, the post-merging struc-

ture has mode numbers of m¼m0/2 and k¼ k0/2. The pitch

angle of the helices, /¼m/kR, is not affected by the merging

due to the simultaneous reduction in m and k. Note that the

final possible result of this cascade of helical modes is the

m¼ 1 mode and not the m¼ 0 mode.

Figure 9 shows the axially magnetized, non-imploding

liner of shot 1190 undergoing the merging of adjacent

FIG. 8. (a) Radial positions for shot 1211 (Bz¼ 0 T), offset by 0.2 mm per frame (the plotted radii are given by RplotðtnÞ ¼ ðn� 1Þ � 0:2 mmþ RmeasuredðtnÞ,
where RmeasuredðtnÞ is the measured radius of the nth frame at time tn, with t1¼ 170 ns, t2 ¼ 195 ns, etc.). The dashed lines track the position of local maxima

(triangles) from frame to frame and show the merging of instability bumps. (b) The instability wavelength determined using a “mean-crossing” method (see

Ref. 20) for the data in (a), showing a nearly discrete increase from k¼ 0.6 mm to 1.1 mm to 1.9 mm. (c) Wavelength power spectrum of radial positions in (a),

determined using the Fast Fourier Transform. A Hanning window and zero-padding were applied.

FIG. 9. Shadowgraphy images for a non-imploding, magnetized liner

(Bz¼ 1.1 T, shot 1190) showing evidence of helical mode merging. The

enlarged regions show four bumps at 254 ns (a) which merge to form two

bumps at 314 ns (b). This may be interpreted as the m¼ 4 mode merging to

generate the m¼ 2 mode (the latter is identified using a tracking algorithm

of self-emission structures1). However, the m¼ 4 mode cannot be identified

in self-emission due to a low signal-to-noise ratio.
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instability bumps. An enlarged region in the images shows

that four instability bumps merge to form two instability

bumps. Since these later time (314 ns), longer-wavelength

structures correspond to an m¼ 2 helical mode, it is possible

that these early-time (254 ns) structures correspond to an

m¼ 4 mode. A caveat to this interpretation is that the m¼ 4

mode cannot be clearly identified in the image taken at

254 ns. Due to the lack of self-emission striations, the small

wavelength instability features cannot be connected across

the plasma and the method to identify the azimuthal mode

number in Ref. 1 cannot be applied. An alternative interpre-

tation is that by 254 ns, the general form of the m¼ 4 mode

has developed (or perhaps even the m¼ 8 mode with a

smaller axial wavelength)—the instability bumps have

developed in a tilted pattern but have not linked completely

about the circumference of the liner. By 314 ns, the m¼ 2

mode cannibalizes these incomplete helix-like structures to

generate a coherent structure consisting of two intertwined

helices.

These interpretations are consistent with the WZL ana-

lytical calculations in Fig. 4. Following a period of time

where the axial magnetic field completely stabilizes all insta-

bility modes, the m¼ 9 mode becomes the first mode to

destabilize (t¼ 46 ns); however, the m¼ 4 mode has the larg-

est growth rate when the instability bumps are first resolv-

able (t¼ 120 ns). Thus, these higher order modes are

expected to develop in the axially magnetized liner-plasma.

IV. CONCLUSION

In this paper, we have presented experimental results for

thin-foil, cylindrical plasmas driven with �600 kA. We

showed that: (1) the applied axial magnetic field, irrespective

of its direction (e.g., parallel or anti-parallel to the flow of

current), reduces the instability amplitude for pure MHD

modes (e.g., modes devoid of the acceleration-driven MRT

instability); (2) imploding liners (where MHD modes couple

to MRT) with applied fields of Bz¼ 0.5 – 0.8 T and

Bz¼ 1.1 – 2.0 T generated m¼ 1 and m¼ 2 helical modes,

respectively, which persisted from the implosion to the sub-

sequent explosion stage; (3) the merging of instability struc-

tures enabled the re-initiation of an exponential instability

growth rate; and (4) an inverse cascade in both the axial and

azimuthal wavenumbers, k and m, may be responsible for the

final m¼ 2 helical structure observed in our experiments.

These helical modes are phenomenologically consistent with

the helical features observed by Awe et al.,11,12 which may

be interpreted as m¼ 5 and m¼ 6 modes that persist as dis-

crete helical modes8 during the implosion stage. The seeding

of these helical modes, whether from noise or from an addi-

tional early-time instability, remains an outstanding ques-

tion, for both university-scale experiments and MagLIF

experiments at Sandia National Laboratories.
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