
Time dependent Doppler shifts in high-order harmonic generation in intense
laser interactions with solid density plasma and frequency chirped pulses

E. C. Welch,1,a) P. Zhang,1 F. Dollar,2 Z.-H. He,1 K. Krushelnick,1,3 and A. G. R. Thomas1,3,b)

1Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor,
Michigan 48109-2104, USA
2JILA, University of Colorado, Boulder, Colorado 80309, USA
3Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2104, USA

(Received 19 February 2015; accepted 23 April 2015; published online 6 May 2015)

High order harmonic generation from solid targets is a compelling route to generating intense

attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of

harmonics have only recently started to be considered. Here, we study the effects of ion motion in

harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using

particle-in-cell simulations, we find that there is an optimum density for harmonic production that

depends on laser intensity, which scales linearly with a0 with no ion motion but with a reduced

scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and

also find that the background ion motion induces Doppler red-shifts in the harmonic structures of

the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the

incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we

are able to eliminate these Doppler shifts almost completely. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4919857]

I. INTRODUCTION

High order harmonic generation (HHG) from laser

solid-density plasma interactions has been studied exten-

sively.1–15 It occurs when the surface electrons of the tar-

get are oscillated by an intense laser field to relativistic

speeds, where strong nonlinear effects give rise to the

re-radiation at harmonics of the fundamental laser

frequency.5–9,13,15

While much analytical work has been performed by

using a simplified relativistic oscillating mirror model,1,4 the

understanding of HHG under realistic conditions is still

somewhat limited. A number of previous theoretical studies

in HHG considered the electron dynamics on interfaces and

the scaling of the harmonics to high intensities,1,3,4,16 how-

ever, analysis and simulations have been typically performed

with static ions. However, as the laser intensity increases, it

is clear that the ponderomotive push of the laser pulse will

eventually cause significant ion motion during the passage of

the laser pulse.17–22 This motion will further complicate the

relativistic moving mirror mechanism by adding an addi-

tional slow time scale Doppler shift to the reflected electro-

magnetic radiation.10,15

In this paper, we investigate the role of ion motion

in HHG at very high laser intensities and show how the

harmonic structure can be affected. We restrict our study

to sharp interfaces (step function density profile) only

and do not consider ionization physics, for simplicity.

We show that there is an optimum density for harmonic

production that depends on laser intensity, which scales

linearly with the normalized vector potential a0 ¼ eE0=
mecx0 with no ion motion but a reduced scaling if ion

motion is included. We find that Doppler shifts will be

present in the harmonic structures of the reflected pulse

because of bulk ion motion. Furthermore, the degree of

the Doppler shifts is very sensitive to the envelope of the

incident laser pulse. Finally, we demonstrate a method to

eliminate the Doppler shifts by including a frequency

chirp in the incident pulse.

II. RESULTS AND DISCUSSIONS

A. Simulation configuration

We preformed a series of numerical experiments on

the interaction of k0 ¼ 800 nm wavelength, linearly polar-

ized laser pulses with a steep plasma density (i.e., electron

number density) profile. The laser pulses had various tem-

poral shapes, as detailed later, all with a duration of order

10 s fs and intensity of order 1021 W cm–2, corresponding to

a0 � 30. The reflected pulse contained rich components of

high harmonics of the fundamental laser frequency, created

through the relativistic oscillating mirror effect.1–3 Our

simulations were performed using a one-dimensional ver-

sion of the particle-in-cell (PIC) code, EPOCH23 (1D3P).

The solid density plasma comprised of two species repre-

senting electrons and fully stripped Aluminum-27 ions. The

number of particles-per-cell used was NPPC¼ 256 for both

species and the cell size was Dx=k0 ¼ 3� 10�3. The plasma

density was a step function with values n¼ 0 for 0 � x
� 20k0 and n¼ n0 for 20k0 < x < 30k0. The effects of ion

motion on the harmonic generation were investigated by

comparing simulations with static (i.e., infinite mass) and

mobile ions.
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B. Determination of the optimum density for HHG

The maximum number of harmonics that can be obtained

from laser solid-density plasma interactions depends on many

factors such as the target plasma density, pulse length, shape,

and intensity. In our previous paper,13 we demonstrated that

the scale length of an exponential plasma ramp was critical to

the optimization of harmonic production. Here, we investi-

gate an analogous scaling by keeping the density profile fixed

(as a step function), but varying the plasma density to deter-

mine the optimum density for harmonic production. We use

an incident Gaussian laser pulse of 20 fs full width at half

maximum (FWHM) and focus only on the effects of the

plasma density and pulse intensity on HHG. For a given laser

intensity, higher plasma density implies a higher restoring

force for plasma oscillation, which limits the amplitude of the

electron surface oscillations, therefore limiting the amount of

HHG by the relativistic oscillating mirror mechanism. By

contrast, if the plasma density is too small, larger amplitude

surface oscillations may become unstable, resulting a distor-

tion and broadening of the HHG. Relativistically induced

transparency24,25 will occur if the density is lower than the

threshold ne=a0nc < 1, where the plasma starts to become

transmissive, so the optimum density for harmonic produc-

tion must have a lower bound of ne > a0nc. Here, we find the

optimum plasma density at which the HHG signal may be

maximized but remain as a clean “picket fence” shape of

high order harmonics by performing a large series of 1D

simulations.

The optimum plasma density was determined by observ-

ing the largest number of clear harmonics presented in a nu-

merical form of the Wigner transforms of the reflected

pulse26

Wðk; nÞ ¼
XN

m¼1

f ðnþ mÞf ?ðn� mÞe�ikm=2K: (1)

Figure 1(a) shows an example of the reflected Gaussian

pulse with intensity of 1021 W cm�2 reflected from a plasma

with density of 50nc, where nc is the non-relativistic critical

density of the plasma. Its numerical Wigner transform is

shown in Fig. 1(b), with harmonics up to order 15x0 dis-

played. Note that only odd harmonics should be present in
the Fourier spectrum but even harmonics appear in the
Wigner transform. This is because a Wigner transform is not

a linear transform but causes cross terms to appear between

harmonics, as in an autocorrelation.

The optimum densities for maximum number of har-

monic generation are shown in Fig. 2, for particle-in-cell

simulations with both static ions and mobile Al-27 ions. It

was found that the optimum electron number density, n0, for

HHG increases as the square root of laser intensity, I, i.e.,

optimum scales approximately as a0 with no ion motion but

if ion motion is included then the optimum density is lower.

The n0 / a0 scaling can be understood in the following

way. For ultrarelativistic laser-plasma regime with no ion

motion, the ultrarelativistic similarity theory4,27 states that

the plasma-electron dynamics depends only on the similarity

parameter S ¼ n0=a0nc¼ const, where n0 is the plasma

density, which implies that the optimum plasma density for

HHG should scale as a0, consistent with the observed scal-

ing. For our parameters (pulse length and density profile), a

FIG. 1. Gaussian pulse with intensity of 1021 W cm�2 reflected off plasma

with density 50nc. The reflected pulse (top) is shown along with its Wigner

transform (bottom). As noted in the text, the Wigner transform itself gener-
ates the even harmonics observed in the figure.

FIG. 2. Optimum densities for HHG as a function of pulse intensity from the

1D PIC simulations, for both static ions (circles) and mobile Al-27 ions

(squares). Symbols represent the simulation data, error bars represent range

of densities with equal number of observable harmonics, and solid lines rep-

resent the scalings described in the text fitted to the simulation data points.

(a) Infinite mass ions and (b) Al-27 ions.
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value of S0 � 5 represents the optimum density as a function

of intensity (extracted from the gradient of the curve labeled

Fig. 2(a)).

When ion motion is included in the simulations, the opti-

mum initial density is lower than in the static (infinite mass)

ions case. This is because the ions are accelerated by the radi-

ation pressure and result in a higher density at the surface

where the electron surface oscillations occur. We understand

this in terms of the decoupling of the two timescales: fast

oscillations of electrons at the laser frequency and a slow

evolution of the ion density. The standard picture of the ion

motion in a semi-infinite target is that of “hole-boring”21,22 at

velocity vb, i.e., the approximately constant speed at which

radiation pressure drives the ion front forward in a thick tar-

get. In the rest frame corresponding to this velocity, there is a

force balance between radiation pressure and the change in

momentum of an incoming stream of ions with velocity �vb

being reflected within a narrow region near the interface that

is depleted of electrons. Making use of this frame of refer-

ence, the hole boring velocity can be shown to be21,22

bb ¼
vb

c
¼ �a0

1þ �a0

; (2)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Zme

mi

nc

ne

r
’ 1:7� 10�2

ffiffiffiffiffi
nc

ne

r
: (3)

After a long time, it can be shown that the average density in

the laboratory frame is 2n0, due to the overlap of the two ion

streams with equal density n00 ¼ n0=cb in the hole-boring rest

frame, where cb ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

b

q
. Therefore, it would be

expected that for a long pulse the optimum initial plasma den-

sity will be a factor of 2 lower than with infinite mass ions

because of the effect of doubling of the density due to the

accelerated ions. The reason for the scaling indicated by line

Fig. 2(b) is because of the short pulse duration compared

with the time it takes to accelerate the ions across the electron

depletion region in the hole boring frame, sacc.

In the hole boring frame, ions enter the electron deple-

tion region and are reflected, leading to an increased average

density in the electron depletion region (which represents the

effective “spring constant” for the relativistically oscillating

mirror). The flux of ions into this region over the pulse dura-

tion is Dn ¼ n0vbsL. The width of the depleted region is

approximately equal to vbsacc, hence, the average density of

ions at the end of the pulse is

n ¼ n0 þ n0

vbsL

vbsacc
¼ n0 1þ sL

sacc

� �
: (4)

By considering the longitudinal electron force balance, charge

conservation and Gauss’s law, Robinson et al.21 give the ion

acceleration time as (after substituting for the expression for

bb above)

sR ¼
2mic

qE0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�a0

1þ �a0ð Þ2

s
�a0; (5)

where E0 ¼ a0mex0c=e is the laser electric field. This expres-

sion was derived for circular polarization. For linear polariza-

tion (as is necessary for harmonic generation), the field will

be rapidly varying between its maximum value and zero as

the electron sheet moves backwards and forwards. Hence, we

consider a two times longer acceleration time of sacc ¼ 2sR.

For �a0 � 1 (for densities greatly exceeding 10nc, this condi-

tion corresponds to a0 � 1000, which is well within the limits

explored here), the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�a0=ð1þ �a0Þ2

q
is close to 1.

Hence, we will drop this relativistic correction to the ion

motion to obtain an acceleration time of

sacc ¼
4

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

Zme

nc

n0

r
: (6)

The ultrarelativistic similarity theory does not take into

account the ion motion. However, if we assume the separa-

tion of timescales between electron and ion dynamics is suf-

ficiently distinct, the electrons will have similar dynamics

for an interaction of a laser of Lorentz invariant strength a0

with the surface density for n=nca ¼ Sn, with n a slowly

evolving function of time. Using Eq. (4) and assuming the

optimum Sn ¼ n=nca0 is the same as for fixed ions Sn ¼ S0,

we can express the optimum density as a function of vector

potential implicitly as

a0 ¼
1

S0

n0

nc
þ 1

4

ffiffiffiffiffiffiffiffi
Zme

mi

r
x0sL

n0

nc

� �3=2
" #

: (7)

This scaling is indicated by the curve labeled (b) in Fig. 2

and shows reasonable agreement with the simulation results

with ion motion. When the ion mass is taken to be infinite,

this scaling reduces to the similarity theory curve (a), as it

should do.

C. Doppler shifts due to surface motion

As seen from Fig. 1(b), there is a Doppler frequency

shift in the harmonics within the duration of the reflected

pulse when mobile ions are used in the simulation, as would

be expected of pulse reflection from a moving mirror. This

net surface motion is caused by the non-negligible motion of

the background ions during the laser plasma interaction. In

Fig. 3, we plot the surface velocity of the electron mirror

when it is impinged by laser pulses with various temporal

envelopes. It is clear that the surface velocity follows closely

the shape of the temporal envelope of the incident laser

pulse. Also shown in Fig. 3 are the fundamental frequencies

of the reflected pulse, which are obtained by looking at the

peak values of the Wigner transform (the frequency of the

largest magnitude for each moment in time). The frequency

shifts also follow closely the envelope of the incident laser

pulses. This may be easily understood as follows. When the

laser intensity increases, the surface velocity also increases,

which, in turn, introduces a larger frequency shift (i.e., larger

Doppler red shift). Similarly, when the laser intensity

decreases, the surface velocity will decrease, resulting in a

smaller frequency shift.
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The high harmonic generation via laser-solid interaction

in the presence of moving ions may be analyzed using a sim-

ple oscillating mirror model. Previous studies2,3 assumes that

the electrons at the plasma vacuum interface undergo forced

oscillations around the edge of an immobile step-like ion

background driven by the ponderomotive force of the incident

laser pulse. Its origin is the~v � ~B term of the Lorentz force,

and its oscillatory term varies as FpðtÞ / ILk
2
L sinð2x0tÞ.

Charge separation gives rise to an electrostatic field, which

serves as the restoring force. Thus, to first order, the mirror

motion can be expressed as

Xmðx0t0Þ ¼ Am sinð2x0t0 þ /mÞ: (8)

The harmonic components contained in the reflected pulses

are due to the retardation effect between the point of refer-

ence (the observer) and the electron interface on which the

incident wave is reflected. Assuming that the (normalized)

laser field crossing the observer position is EinðtÞ ¼ sinðx0tÞ,
because of the retardation effect, when it returns to the ob-

server position (after reflecting from the moving mirror sur-

face), the wave form will become

EreðtÞ ¼ sinðx0t� 2k0Xmðt0ÞÞ; (9)

where t0 ¼ tþ Xmðx0t0Þ=c is the retarded time, c is the speed

of light and k0 is the laser wave number in free space.

Now consider a laser pulse with varying strength, for a

plasma target with mobile ions. As seen from the simulation

data (Fig. 3(a)), there is a surface velocity for the electron

mirror that is correlated to the hole boring velocity. In the

case of a ramping pulse, this surface velocity increases line-

arly with time, indicating an accelerating motion of the mir-

ror surface away from the observer. By including this

accelerating motion, we have

Xm;vb
ðt0Þ ¼ Am sin 2xb t0 �

ð
bbdt0

� �
þ/m

� �
þ
ð
vbdt0; (10)

where xb ¼ x0ð1� bbÞ is the laser frequency measured on

the surface moving at non-relativistic speed bb. We can

Taylor expand the velocity about some reference hole boring

velocity vb0 such thatð
vbdt0 ¼ vb0t0 þ 1

2
_vb0t02 þ � � � : (11)

The resultant reflected wave form at the observer position

can be written as

Ere tð Þ ¼ sin

�
x00t� x00 _vb0t2

c
þ � � �

�2k0Xm

�
x00t0 � x00 _vb0t2

2c
þ � � �

��
; (12)

where x00 ¼ ð1� 2bbÞx0 is the (non-relativistically)

Doppler shifted fundamental frequency and terms of order

b2
b0 have been ignored. For a non-accelerating surface, this

expression is the same as Eq. (8), except with Doppler

shifted fundamental frequency x00. The form of the expres-

sion suggests the entire harmonic structure would be

Doppler shifted, consistent with the results from simulation

(Fig. 3(a)). For a slowly accelerating pulse, the next order

term in the expansion in Eq. (12) suggests that a linear chirp

would be introduced.

The expected Doppler shift can be calculated relativisti-

cally using a relativistic expression for the hole boring veloc-

ity.21 The instantaneous Doppler shift of the reflected wave

frequency x00 is related to the incident frequency x0 by

x00
x0

¼ 1� bb

1þ bb

¼ 1

1þ 2�a0

: (13)

For �a0 � 1 (true for the conditions investigated in this pa-

per), we can express the instantaneous frequency shift due to

hole boring as

Dx ¼ x00 � x0 ¼ 2�a0; (14)

FIG. 3. Surface velocity bb ¼ vb=c (dots) and fundamental frequency of the

reflected pulse (crosses) as a function of time for laser pulse with different in-

tensity envelopes incident on targets: (a) Ramp, (b) Gaussian, and (c) Square,

with target densities of ne ¼ 80nc; ne ¼ 80nc, and ne ¼ 140nc, respectively,

where nc is the critical plasma density at 800 nm. The dashed lines represent

a0 for the pulses, all of which have peak intensity of 1022 W cm�2.
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which explicitly shows that the shift is proportional to the

square root of laser intensity.

To characterize the effects of Doppler shifts in harmon-

ics generation, in Fig. 4(a), we show the Wigner transform of

a ramp pulse with a peak intensity of 1021 W cm�2 and dura-

tion 20 fs after reflection from a target with density of 44nc.

All the harmonics components are red-shifted as time

increases. Note that the higher order harmonics have larger

effective Doppler red shift, since the spacing between har-

monics is down shifting. In the case studied here, for the

10th harmonic and above the Doppler red shift of the fre-

quency is greater, relative to the static ions case than the

laser fundamental frequency, which significantly degrades

the coherence of the radiation produced. For generating

coherent radiation, in particular, attosecond pulse trains, it is

thus important to eliminate the Doppler red shifts observed

in the harmonics.

D. Correcting the Doppler shift of the harmonics using
a chirped pulse

We found that an effective way of correcting the

Doppler shifts in HHG is to introduce frequency chirps in

the incident pulse. Equation (12) demonstrates that for a

slowly varying laser envelope a chirp will be introduced to

the reflected pulse. This can be pre-compensated by intro-

ducing an appropriate chirp to the pulse before reflection.

The expected magnitude of the chirp for a ramp shaped pulse

of duration sL can be calculated from Eq. (12) to be

ð1=x00ÞDx=Dt ¼ ðvb0=cÞðTL=sLÞ � 0:5% per laser period TL.

In Fig. 4(b), we show the Wigner transform for reflection of

the same ramp pulse, as in Fig. 4(a), but with a linearly

chirped pulse with a 0.4% change in frequency per funda-

mental laser period, which is in reasonable agreement with

the prediction. As can be seen in the figure, the ion motion

induced Doppler shifts are almost completely compensated

for. For an arbitrary laser pulse intensity profile, a nonlinear

chirp could be used to account for the Doppler shift.

III. CONCLUSIONS

We have studied the effects of ion motion in harmonics

production at ultrahigh laser intensities interacting with solid

density plasma with a sharp interface. We found that there is

an optimum initial target density for harmonic production

that depends on laser intensity, which scales as a0 with no

ion motion but that this scaling is reduced if ion motion is

included due to hole boring. We also found that Doppler red-

shifts will be present in the harmonic structures of the

reflected pulse, because of the ion motion. The temporal de-

pendence of the Doppler shifts follows closely the envelope

of the incident laser pulse. Finally, we demonstrated that

slowly accelerating ion motion induced Doppler shifts can

be effectively removed by introducing a linear frequency

chirp in the incident pulse.
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