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The Brillouin flow is the prevalent flow in crossed-field devices. We systematically study its stabil-

ity in the conventional, planar, and inverted magnetron geometry. To investigate the intrinsic nega-

tive mass effect in Brillouin flow, we consider electrostatic modes in a nonrelativistic, smooth bore

magnetron. We found that the Brillouin flow in the inverted magnetron is more unstable than that

in a planar magnetron, which in turn is more unstable than that in the conventional magnetron.

Thus, oscillations in the inverted magnetron may startup faster than the conventional magnetron.

This result is consistent with simulations, and with the negative mass property in the inverted mag-

netron configuration. Inclusion of relativistic effects and electromagnetic effects does not qualita-

tively change these conclusions. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927798]

I. INTRODUCTION

The inverted magnetron is a crossed-field device with

the cathode on the outside instead of the inside, as is the case

in conventional magnetrons. It continues to spark interest, as

it has some marked advantages over a conventional magne-

tron. The larger cathode area allows for more current, and

the centripetal force on the electrons acts in the same direc-

tion as the magnetic force, which reduces the magnetic field

required for insulation of the anode. Simulations of the recir-

culating planar magnetron (RPM)1–3 show that bunching

occurred in the recirculating bends if the device was in an

inverted configuration.

In the inverted magnetron configuration, a rotating elec-

tron possesses a “negative mass” effect, so that a thin axis-

encircling electron layer is subject to the negative mass

instability.4,5 In such a thin electron layer, the negative mass

instability is the dominant instability, and the diocotron

instability is the residual instability which becomes dominant

in the planar limit, in which case the negative mass effect is

absent.4 Unanswered is the negative mass effect in a rotating

Brillouin flow, whose electron hub is not “thin.” Moreover,

the very significant velocity shear in the Brillouin flow

intrinsically represents a large velocity spread, which tends

to stabilize the negative mass instability on a thin electron

beam. Since the Brillouin flow is the prevalent state in a

crossed-field geometry,6,7 we systematically study its stabil-

ity in conventional, planar, and inverted magnetron configu-

rations. To investigate the intrinsic negative mass effects in

Brillouin flows, we consider electrostatic modes in a nonrela-

tivistic, smooth bore magnetron.

The negative mass instability is a cylindrical effect. For

a thin rotating electron beam, it is characterized by the

dimensionless parameter h ¼ eE0r=c3
0mc2b2

0 which is a mea-

sure of the ratio of the electric force to centripetal force.4,8

Here, e is the magnitude of the charge of an electron, m is

the rest mass of an electron, E is the electric field at the elec-

tron beam, r is the radius of the electron beam, b0 is the

azimuthal velocity of the beam divided by the speed of light,

c, and c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

0

q
is the relativistic mass factor.

Negative mass instability on a thin electron beam occurs

when h > �b2
0=2.4,5,8 For electrons, this condition will

always be satisfied if the radial electric field E0 is positive, as

in an inverted magnetron configuration. An electron in the

conventional magnetron configuration would exhibit a posi-

tive mass behavior. Since Brillouin flow has a substantial

thickness and has very significant velocity shear within the

flow as indicated above, it is unclear if the notion of negative

mass instability applies. It should be stressed that the

Brillouin flow, because of its strong velocity shear, is sub-

jected to a diocotron-like instability. The stability of

Brillouin flow in the planar magnetron and the conventional

magnetron configuration has been studied extensively by

Buneman,9 Swegle,10 Antonsen,11 Davidson,12,13 and

Tsang.14 The geometries they consider exclude negative

mass behavior. They include only positive mass behavior.

In order to isolate the effects of the negative mass insta-

bility from the velocity shear which is always present in the

Brillouin flow, the planar case is briefly revisited first. A

comparison between the growth rates of planar, conven-

tional, and inverted magnetrons in the non-relativistic regime

then illustrates the positive or negative mass effects on the

shear flow instability. We show that the inverted magnetron

has a higher instability growth rate than the planar magne-

tron, while the conventional magnetron has the lowest

growth rate.

In Section II, we summarize the results for the stability

of the planar Brillouin flow. In Section III, we compare the

Brillouin flow stability in the planar, conventional, and

inverted magnetron configurations. We also consider the azi-

muthal modes that would sequentially be excited as the gap

voltage is ramped up. In Section III, we include the results

on relativistic and electromagnetic effects (still for the

smooth bore configuration). Concluding remarks are given in

Section IV.
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II. STABILITY OF PLANAR BRILLOUIN FLOW

The planar Brillouin flow geometry is shown in Fig. 1.

In equilibrium, a voltage V is imposed across the anode-

cathode (AK) gap with gap separation D. The Brillouin flow

is a cold, laminar shear flow in the y-direction with linear ve-

locity v0¼ yxcx, which increases linearly from the cathode

(x¼ 0) to the top of the Brillouin hub (x¼ d). Here,

xc¼ eB0/m, where B0 is the equilibrium magnetic field in

the z-direction (Fig. 1). The Brillouin flow has constant

electron density n0 within the Brillouin hub (0< x< d) with

the property x2
p ¼ x2

c , where x2
p ¼ e2n0=me0. In terms of V,

B0, and D, the Brillouin hub height is given by

d ¼ Dð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V=VH

p
Þ, where VH ¼ ð1=2Þðm=eÞðxcDÞ2 is

the Hartree voltage. See, e.g., Ref. 8. The vacuum region has

a width W¼D � d (Fig. 1).

The stability of planar Brillouin flow under is well docu-

mented.9–14 For perturbation quantities with expðixt� ikyyÞ
dependence, the principal equations are presented here in

dimensionless form using the following variables:

�x ¼ xky; �x ¼ x
jxcj
� �xr � i�xi; �X ¼ �x � �x; (1)

so that �xi is the normalized growth rate. The governing

equation reads

@2/1

@�x2
¼ /1 þ

2

�X
3 � �X

@/1

@�x
þ /1

�X

� �
: (2)

The vacuum boundary condition is

1

/1

@/1

@�x

����
rvac

¼ �coth �Wð Þ; (3)

and the jump condition reads

1

/1

@/1

@�x

����
rvac

¼ 1

/1

@/1

@�x

����
rhub

� 1

�X
2

1

/1

@/1

@�x
þ 1

�X

� � ����
rhub

: (4)

The solution to the above set of equations is shown in Fig. 2 for

different wave numbers (through �d¼ kyd) for the case where
�d¼ �W. This case of 50% fill represents intermediate magnetic

insulation and is also common for relativistic magnetrons. The

distance between the hub and the anode, �W, enters only in the

vacuum boundary condition as coth( �W) which is roughly a

constant (¼1) over the entire range of �W. The real part of the

frequency increases linearly with ky (i.e., with �d). We found

that, for large values of �d, �d � �xr ¼ 0:55 and �xi¼ 0.06, a

result proven by Buneman, Levy, and Linson.9 The real part of

the frequency corresponds to a synchronous layer within the

Brillouin hub. The system is stable below a certain threshold,

namely, there is no instability if the real part of the frequency is

less than the electron cyclotron frequency.10

III. STABILITY OF CYLINDRICAL BRILLOUIN FLOW IN
CONVENTIONAL AND INVERTED MAGNETRON

We use ra, rb, and rc to designate, respectively, the anode

radius, the Brillouin hub radius, and the cathode radius in

both conventional magnetron and inverted magnetron config-

urations. Figure 3 shows the inverted geometry. Cylindrical

Brillouin flow, like the planar version, has the property

FIG. 1. Planar Brillouin flow.

FIG. 2. Planar magnetron eigenvalue solutions for the case where �d¼ �W.

This condition completely defines the normalized variables in the eigenvalue

problem.

FIG. 3. Brillouin flow in the inverted magnetron configuration.
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x2
p ¼ x2

c at the cathode, though since the density varies radi-

ally, this does not hold true for the rest of the Brillouin hub.

The following dimensionless equations are applicable to

both the normal and inverted magnetron configurations,

where þ�x (��x) is used in the equation for �X in the conven-

tional (inverted) magnetron configuration, and ‘ (‘> 0) is the

azimuthal mode number:

�r ¼ r

rc
; �x ¼ x

jxcj
¼ �xr � i�xi;

�X ¼ 6�x � 1

2
l 1� 1

�r2

� �
; �x2

p ¼
1

2
1þ 1

�r4

� �
: (5)

The governing equation reads

/001 ¼
l2

�r2
/1 �

/01
�r
þ

2l�x2
p

�X �X
2 � �x2

p

� � /01
�r3
þ l

�r6 �X
� 1

�r4

� �
/1

" #

� 2

�X
2 � �x2

p

� � /01
�r5
þ l/1

�r8 �X

� �
: (6)

The boundary condition in the vacuum region outside the

Brillouin hub is
/01
/1

����
rvac

¼ l

�r

rb
l

ra
l
þ ra

l

rb
l

" #

rb
l

ra
l
� ra

l
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and the jump condition is

/01
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¼ /01
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p
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2

/01
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þ l

�r3 �X
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The real part of the frequency shown in Fig. 4 for both

conventional and inverted magnetron scales roughly linearly

with the mode number ð‘Þ, as was the case for the planar

magnetron. Additionally, the threshold for system stability

also occurs at about the point the real frequency is equal to

the cyclotron frequency. The imaginary part of the frequency

shows a similar trend to the planar system, except that it

decreases after reaching a peak instead of approaching an as-

ymptote. Note the large contrast in the growth rate between

the conventional magnetron (Fig. 4(a)) and the inverted mag-

netron (Fig. 4(b)) in this example. We will further explore

this contrast in Fig. 5.

The values in Fig. 5 are found from solving the eigen-

value equation for the planar and cylindrical governing equa-

tions at different cathode to anode radii ratios. The planar

geometry is the limit where cathode radius and anode radius

go to infinity, so the ratio is 1. The AK gap separation is held

at a constant of 1 m, the Brillouin hub is at a constant 50%

fill (0.5 m from the anode and cathode), and the bunch fre-

quency at the top of the hub (lv0=rb for cylindrical and kyv0

for planar, where v0 is the velocity of electrons at the top of

the Brillouin hub) is held constant at 2 � xc while the anode

and cathode radii are varied.

The inverted geometry shows an increase in instability

strength as the ratio of rc/rb increases, starting from the pla-

nar ratio of 1. The conventional geometry stabilizes as rc/rb

decreases from the planar ratio of 1 (Fig. 5). The increase in

FIG. 4. The eigenvalue solutions for the conventional (a) and inverted (b)

magnetrons. The inner radius is 1 m, the Brillouin hub radius is 1.5 m, and

the outer radius is 2 m.

FIG. 5. Normalized growth rate as a function of cathode radius to hub height

for a constant AK gap width, hub height, and bunch frequency. The conven-

tional, planar, and inverted magnetrons correspond to, respectively, rc/rb< 1,

rc/rb¼ 1, and rc/rb> 1.
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rc/rb for the inverted geometry and decrease in rc/rb for the

conventional geometry both correspond to a decrease in

inner and outer radii for the magnetrons. This indicates that

the inverted magnetron configuration destabilizes the intrin-

sic instability in the planar system, while the conventional

magnetron configuration stabilizes it.

Having shown that the inverted magnetron is inherently

more unstable than conventional magnetron, we now explore

which modes start up first as the AK gap voltage of the mag-

netron is turned on, while the magnetic field remains con-

stant. The turn-on is assumed to be sufficiently slow such

that the system is in a quasi-static equilibrium. As the volt-

age is ramped up, the Brillouin hub radius rb increases in the

conventional magnetron shown in Figs. 6(a) and 6(c), but

decreases in the inverted magnetron configuration shown in

Figs. 6(b) and 6(d). The growth rate is normalized to the real

part of the mode frequency in Figs. 6(a) and 6(b) and to the

electron cyclotron frequency in Figs. 6(c) and 6(d). In the

conventional magnetrons in Figs. 6(a) and 6(c), the higher

order modes start up first, and with a higher growth rate than

lower order modes. All of the modes lose strength rapidly as

the Brillouin hub increases. For the inverted magnetrons in

Figs. 6(b) and 6(d), the higher order modes also start up

sooner than lower order modes, but they are weaker in that

xi/xr is lower for high ‘. Additionally, all of the modes

show an increase in �xi as the Brillouin hub increases.

IV. ELECTROMAGNETIC AND RELATIVISTIC EFFECTS

Including relativistic effects in a fully electromagnetic

formulation, the perturbed fields are governed by the differ-

ential equation, Eq. (14) of Chernin and Lau,4 with the equi-

librium profiles for n(r), v(r), E(r), and B(r) provided by the

electromagnetic Brillouin hub equilibrium solution.13,15 The

electromagnetic eigenvalue solutions are found from match-

ing the perturbed azimuthal electric fields in the vacuum

region to those in the Brillouin hub. It has been shown that

increasing the particle velocity into the relativistic range

reduces the normalized instability growth rate for planar

geometries.10

Figure 7 shows the normalized growth rate for a cylin-

drical case as the particle’s kinetic energy at the hub

increases. The configuration used in both figures is a 1 m

inner radius, 2 m outer radius, 50% Brillouin hub fill of the

AK gap, and a mode number ‘¼ 8. These two figures show

that conventional magnetrons experience a decrease in

growth rate as electrons become more relativistic, while

inverted magnetrons have increased growth in the same sit-

uation. As with the aspect ratio studies in Sec. III, it appears

that relativistic effect in the inverted magnetron configura-

tion leads to further destabilization, while the conventional

magnetron configuration is stabilized.

The inverted configuration in Fig. 7(b) has a fairly flat

normalized growth rate until it experiences a rapid increase

FIG. 6. The ratio of xi/xr as a function of rb for a conventional (a) and

inverted (b) magnetrons. The ratio of xi/xc as a function of rb for a conven-

tional (c) and inverted (d) magnetrons. In all cases, the inner and outer radii

are held constant at 1 m and 2 m, respectively. rb increases as the gap voltage

increases for (a) and (c), and decreases for (b) and (d).

FIG. 7. Normalized growth rate as a function of electron velocity (normal-

ized to the speed of light) at the hub for a conventional (a) and inverted (b)

magnetrons. The geometry (1 m inner radius and 2 m outer radius) is held

constant, the mode number l is set to 8, and the voltage and magnetic field

are increased proportionally to achieve a constant hub radius of 1.5 m while

increasing the electron velocity at the hub.
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at b(rb) greater than about 0.8. This is the region in which

the increase in xr starts to diminish with the increase in

electron energy, and xr approaches a limit when the

synchronous electrons are reaching the speed of light (since

xr < lvðrbÞ=rb for synchronism between the wave and the

electrons within the Brillouin hub, and the maximum veloc-

ity of v(rb) is c). The increase in xi with electron energy

slows down in this region as well, but does not approach a

limit. The spike in xi/xr is caused by this behavior, where xi

increases with increasing electron energy, but xr is limited

by the electron velocity. This implies that the instability in

the inverted configuration can still exist even as the relativis-

tic mass of the electrons increases greatly.

The conventional magnetron’s growth rate [Fig. 7(a)],

by contrast, starts to decrease almost immediately with rela-

tivistic effects. This difference in behavior is at least partially

due to a difference in the behavior of xr. In the conventional

configuration, the upper limit for electron velocities in the

hub is c; however, the synchronous electrons have a velocity

limit that is a fraction of c. So the synchronous layer is

pushed toward the cathode surface as v(rb) approaches c (in

contrast, in the inverted magnetron, the synchronous layer is

pushed toward the Brillouin hub radius rb as v(rb) approaches

c). The proximity of this synchronous layer and the cathode

tends to short out the tangential RF electric field at the syn-

chronous layer, thereby reducing the normalized growth rate

in the case of conventional magnetron [Fig. 7(a)].

V. SUMMARY

Dimensionless equations are presented for electrostatic

Brillouin flow, in both planar and cylindrical magnetrons.

The electrostatic eigenvalue solutions for these equations

show that the shear flow instability in the planar geometry is

reduced in the conventional cylindrical configuration, but

enhanced in the inverted configuration. The amount of reduc-

tion or enhancement increases as the radii in the system

decrease. This correlation is consistent with the negative

mass instability, which is a cylindrical effect based on the ra-

tio of electric force to centripetal force.

The electrostatic startup condition with constant mag-

netic field is compared between conventional and inverted

magnetrons. Both geometries show that the higher order

modes start up first as the voltage is ramped up. In the con-

ventional case, the growth rate for any given mode peaks

soon after it starts, and then decreases rapidly. On an abso-

lute time scale (normalized to xc, Fig. 6(c)), the instability

strength of each mode is only slightly different than its near-

est neighbors and it decreases as hub height increases.

Modes in the inverted case also increase rapidly after start-

ing, but show a very slow decrease in normalized growth

rate xi/xr. This translates into an almost linear increase in

xi/xc with hub height. All modes that enter this regime have

roughly equal growth rates, with lower order modes being

slightly favored.

The electrostatic results are transitioned smoothly into

the electromagnetic regime. The normalized growth rate of

the conventional configuration decreases as the electrons at

the hub increase in relativistic energy. The inverted case

increases as the kinetic energy in the outer hub electrons

increases. The planar case shows a decrease in growth rate

with an increase in hub electron kinetic energy.

The shear flow instability, or the diocotron-like instabil-

ity, in a crossed-field geometry has long been conjectured to

cause the startup of a magnetron. Here, we showed that the

Brillouin flow in the inverted magnetron is intrinsically more

unstable than the Brillouin flow in the conventional magne-

tron, consistent with the simulation results of the recirculat-

ing planar magnetron.
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