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Abstract— Recirculating planar magnetron (RPM) experi-
ments at the University of Michigan have utilized a 12-frame
ultrafast intensified CCD camera to analyze the effect of
plasma formation on microwave pulse duration. The RPM
was driven by a -300-kV voltage pulse for 0.3—1.0 us, with
a 0.08-0.27-T axial magnetic field. The RPM has previously
demonstrated peak microwave powers of over 150 MW, with
typical microwave pulse durations of 50-150 ns, far shorter
than the available voltage pulse. To investigate possible
causes of pulse shortening, the RPM was imaged with both
S-band (2 GHz) and L-band (1 GHz) anodes, as well as
two different cathodes with substantially different anode—
cathode (AK) gap widths and end caps. It was found that
a smaller AK gap produced brighter plasma and allowed
for improvements in temporal resolution of the imaging
configuration at the expense of larger end-loss current.
Many shots demonstrated a direct correlation between inter-
vane anode plasma formation and a sharp reduction in RF
power. Anode vane plasma is formed at the axial ends of
the anode, indicating field enhancement effects. Contact
resistance plasma was also observed at the back of anode
vane cavities. Details of plasma formation are illustrated and
methods for remediating these plasmas are proposed.

Index Terms— Coherent radiation, electron beams, fram-
ing camera, high-power microwaves (HPMs), magnetrons,
plasma, pulse shortening.

|. INTRODUCTION

ULSE-SHORTENING affects nearly all high-power
microwave (HPM) devices, and the recirculating planar
magnetron (RPM) [1], [2] is no exception. The exact mech-
anism responsible for microwave cessation in HPM devices
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varies, but common explanations and theories include cathode
plasma expansion [3], anode plasma formation [4], multipactor
RF window breakdown [5], poor RF contact [6], and generator
impedance mismatch [7].

Pulse shortening in relativistic magnetron experiments,
including those at the University of Michigan [8], is typ-
ically attributed to cathode plasma expansion [9]. These
cylindrical relativistic magnetron experiments, however, pro-
duced microwave pulses of hundreds of nanoseconds in
duration. Recent recirculating planar magnetron (RPM)
experiments [10], [11] have exhibited short (50-150 ns),
intense (150 MW) microwave bursts. Given the 2-3-cm
anode—cathode (AK) gap present in the RPM, and typical
gap closure rates of 1-4 cm/us [12]-[14], the effective AK
gap of the RPM does not change fast enough to explain the
rapid pulse shortening that is observed. To determine other
possible contributing factors, a series of imaging experiments
was conducted.

Il. EXPERIMENTAL CONFIGURATION

The pulse shortening measurements were conducted using
variants of the multifrequency recirculating planar mag-
netron (MFRPM) [15], driven by the Michigan Electron
Long Beam Accelerator with a ceramic insulator stack
(MELBA-C) [16]. MELBA-C provides a flat-top voltage pulse
between —250 and —300 kV with a 120-150-ns rise time
and adjustable pulse duration of 200-600 ns. A pair of pulsed
electromagnets in a pseudo-Helmholtz configuration creates
a nearly uniform axial magnetic field pointing toward the
viewport, which was varied on a per-shot basis from 0.08 to
0.27 T. The magnetron was operated at base vacuum pressures
of approximately 3 x 10™* Pa.

To accommodate existing hardware, the MFRPM was
designed with axial extraction [17]. To gain access to an
imaging port, one of the microwave extractors was removed
and replaced by a copper-screened Lexan window, as shown
in Fig. 1. While this necessarily meant that a calibrated
power measurement could not be made during imaging tests,
microwave signals were sampled with an uncalibrated B-dot
antenna within the vacuum chamber, near the viewport. This
probe could only provide relative amplitudes of the RF
pulses, but provided precise temporal information, allowing
microwave behavior to be correlated with observed plasma
formation. The B-dot was sampled by a 6-GHz, 20 GSample/s
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Fig. 1.
operation via a short focal distance lens. The microwave extractor is
replaced by a copper-screened Lexan viewport. For scale, the vacuum
chamber has a diameter of 45.7 cm.

UHSIi-12 framing camera with an axial view of magnetron

Agilent 54855A oscilloscope. The high sampling rate of this
oscilloscope allows direct collection of the 1- and 2-GHz
microwave signals, and enables mode identification through
time-frequency analysis.

In addition to this microwave diagnostic, the performance of
the pulsed power system was monitored using a CuSOy4 resis-
tive voltage divider for the cathode voltage, a pair of digitally
integrated Rogowski coils for the magnetron entrance current,
and a Pearson current transformer for the electromagnet cur-
rent. Electromagnet current is subsequently correlated with an
axial magnetic field value using Hall probe calibrations.

Initial magnetron imaging was accomplished with a mod-
ified Canon Rebel Xsi SLR camera (no IR filter), with an
F5.6 aperture and a 400 ISO speed, placed directly in front of
the copper-screened viewport. After capturing time-integrated
images and ensuring a safe electromagnetic environment,
the Canon SLR was replaced with the Invisible Vision UHSi-
12 framing camera and Nikon DX AF-S Nikkor 18-55-mm
lens, as shown in Fig. 1. The UHSi-12 can capture 12 frames
at 200 million frames per second (5 ns per frame), has an
image intensifier with up to 5000x gain, and has a spectral
response of 450-850 nm. The approximate line of sight (and
field of view) for these cameras is shown in Fig. 2(b).

All images focused on only the central 3-5 vanes of the
anode structure. Simulations have indicated that electric field
stresses are highest in this region [15], and wider field-of-
view images taken during this experiment confirmed that the
depth of plasma generation in the cavities exhibited a half-sine
distribution peaked at the center vane.

The data were collected in three sets: the L-band (1 GHz)
anode with the mode control cathode (MCC-1), the
S-band (2 GHz) anode with the MCC-2, and the L-band anode
with the MCC-2. In all configurations, a planar drift region
was placed on the opposite side of the magnetron, as shown
in Fig. 2(a).

The MCC is a slotted cathode designed to synchronize oper-
ation on each half of the RPM and decrease mode competition.
Design details of the MCC can be found in [18]. MCC-1 is

Fig. 2. (a) Axial view of the test chamber with a (1) planar drift region, (2)
MCC-2 cathode, and (3) S-band anode. (b) Line of sight of the camera
during imaging.

slightly narrower and results in an AK gap of 3.4 cm,
compared to 2.6 cm for MCC-2. MCC-1 also has a larger end
cap, greatly suppressing axial electron beam losses [19], [20].
This was a desirable feature, given the location of the cameras.
Unfortunately, the larger AK gap reduces field intensity (and
plasma self-emission), resulting in minimal light emission and
requiring longer camera exposures. MCC-2 provided brighter
plasma, allowing for camera exposures of 25-50 ns per frame.

Il1. EXPERIMENTAL RESULTS
A. MCC-1 With L-Band Anode

Time-integrated SLR camera images provided clear evi-
dence of substantial plasma formation during the course of
an RPM shot. As shown in Fig. 3, in addition to the expected
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Fig. 8. Time-integrated SLR camera image of L-band oscillator with
an MCC-1 cathode. Plasma formation is visible at the cathode (A),
anode vane tips (B), between the anode vanes (C), and at metal contact
surfaces (D).

cathode (A) and anode (B) plasma in the AK gap, there was
consistent evidence of plasma formation between the anode
vanes (C) and at the back of the anode (D).

The back of the anode (D) serves as the contact point for
the ground path of the anode. Consequently, approximately a
kiloampere of anode current flows through this location, and
these images indicate the RF gasket material used is insuffi-
cient, resulting in poor electrical contact. As shown by time-
resolved imaging, this plasma is formed during the microwave
pulse and could adversely affect magnetron operation.

The long voltage and current pulse (~1 us), relative to
the microwave pulse duration (~100 ns), left considerable
uncertainty as to when the plasma formed. To establish a
narrower window for plasma formation, the framing camera
was fielded to capture image sequences like those shown in
Fig. 4. To collect sufficient light, the camera frame duration
needed to be 150 ns. In this figure, outlines of the cathode and
anode have been sketched in orange and white, respectively.
As shown in Fig. 2(b), the available imaging port is positioned
over the anode (rather than over the AK gap) and is angled
slightly, so there is a parallax effect which makes the cathode
plasma appear closer to the anode than it really is. To provide
a reference in Fig. 4, the axial front and back of the cathode
are denoted with orange lines. The images have also been
recolored to improve contrast and filtered to minimize noise.
Fig. 4(b), corresponding to peak microwave emission, still
contains substantial noise even after filtering. These small,
randomly distributed hotspots are not plasma, and are present
on the images where the lens is completely covered, and on
shots in which the camera is lead shielded. They are most
intense during the microwave pulse and are likely the result
of electromagnetic interference. The images in Fig. 4 were
taken on the L-band anode, with the MCC-1 cathode, so the
intervane spacing (1.9 cm) and the AK gap (3.4 cm) are both
relatively large, and the resulting plasma was weak.

These images were taken on shot 14834, whose voltage,
current, microwave emission, and camera timing are outlined
in Fig. 5. The magnetic field for this shot was 0.13 T.
Fig 4(a) occurs before microwave generation and shows no
evidence of plasma formation. In Fig. 4(b), plasma forms at the
cathode/anode surfaces, between the anode vanes and in the
rear of the cavities, consistent with the time-integrated image
in Fig. 3. This frame contains the entirety of the microwave
pulse. These plasma hotspots grow in intensity in Fig. 4(c),
before nearly extinguishing in Fig. 4(d). In Fig. 4(e)(well
after peak power, current, and voltage), plasma reforms along
the anode and cathode surfaces, growing again in intensity
until Fig. 4(f), before extinguishing again after frame 12 (not
shown).

This late-time plasma formation consistently corresponds
to voltage and current reversal on the pulse power generator
and is generally substantially brighter than early-time plasma.
On shots with no current reversal, no late-time plasma is
observed. Consequently, time-integrated images which appear
to show severe plasma formation in the AK gap may be
misleading, as the bulk of the emission occurs well after the
microwave pulse has ceased.

B. MCC-2 With S-Band Anode

A subsequent dataset captured plasma formation on the
S-band anode and the MCC-2. This configuration had only
a 2.6-cm AK gap, and produced much brighter plasma that
allowed for frame durations as low as 25 ns. A sample set
of frames from this dataset are shown in Fig. 6, where the
surface of the S-band anode and the axial boundaries of the
cathode have been sketched in yellow and black, respectively.
The anode plasma predominantly formed on the axial edges of
the anode vane closest to the camera. Consequently, the anode
vanes have also been drawn slightly narrower than reality,
so that they do not obscure the plasma hotspots.

In these time-resolved images, we again see evidence of
intervane plasma formation in Fig. 6(b) which corresponds to
a drop in microwave intensity. This spot (highlighted with a
red dashed oval) is barely distinguishable from the background
noise in this frame, but clearly continues to develop its inten-
sity in subsequent frames. The location, persistence, growth,
and repeatability (it appears here in many different shots)
provide evidence that this is not simply noise. The magnetron
briefly restarts in Fig. 6(c) and is again extinguished, with
intense plasma formation in multiple cavities. Time-frequency
analysis of this shot [21] indicates the magnetron shifts to a
new operating frequency as the plasma forms. What appears to
be a large, diffuse cathode plasma is actually light produced
by the electron beam striking the Lexan window. As noted
earlier, a disadvantage of the MCC-2 is its relatively small
end caps, which do not confine the beam axially.

C. MCC-2 With L-Band Anode

To analyze the effects of anode geometry, the S-band anode
was replaced by the L-band anode for the final dataset. Given
the larger feature sizes of this anode, the observed plasma
was less intense and the minimum usable frame width was
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770 ns

Fig. 4. Selected framing camera images from shot 14834. Plasma forms during the microwave pulse, extinguishes, restarts as the pulse power
driver current reverses, and then reaches peak intensity well after peak voltage/current.

50 ns. Again, there was intervane plasma generation which
correlated with a sharp drop in microwave intensity, as shown
in Fig. 7(b). The intervane plasma appears to be a small
distance away from the anode surface. This is a result of the
position of the camera [see Fig 2(b)]. This plasma is actually
forming on the axial rear edge of the anode, closest to the
pulsed power driver. The images in Figs. 4 and 6 exhibited
plasma formation on the front axial edge of the anode, closest
to the camera.

The intense plasma on the left side of Fig. 7(c) outlines the
surface of the cathode, with central squares of low plasma
intensity. These squares are the carbon velvet emission areas,
while the rest of the cathode consists of aluminum coated with
Glyptal insulating enamel. The Glyptal appears to be a strong
source of plasma, likely due to electron back-bombardment
and secondary emission. Alternative materials should be
investigated to suppress emission from undesired regions of
the cathode.

IV. DISCUSSION

There are a few noteworthy limitations of these experi-
ments. First, removal of the microwave extractor results in a

magnetron with an unloaded Q of ~1740 [11] and is not
directly representative of typical operating conditions. The
standard load of the MFRPM produced a loaded Q of ~150,
while the tapered waveguide load resulted in a loaded Q
of ~2200 [15]. Without microwave extraction, the electric
fields present on the anode may be artificially high. However,
MAGIC [22] particle-in-cell simulations of MFRPM operation
indicated electric field strengths of over 200 kV/cm within the
anode cavities, as shown in Fig. 8. These intense electric fields,
coupled with electron impacts on the anode, could provide suf-
ficient energy to liberate surface contaminants (>50 J/g [14]),
creating an environment where intervane plasma formation
could disrupt device operation. The observed plasma corre-
sponds to regions of field enhancement and high RF fields,
and likely has localized energy deposition that far exceeds
the bulk energy density of the electron—anode interactions.
Pulse shortening via RF-induced anode vane plasma has been
postulated as a source of pulse shortening in other HPM
devices [23] and in magnetrons at GW power levels [24].
Another limitation is the emissivity of the plasma.
Previous work at Technion has demonstrated that plasma
within a relativistic magnetron can be successfully imaged
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Fig. 5. Typical microwave pulse shortening in the RPM and MFRPM.
Despite a voltage and current pulse lasting for several hundred nanosec-
onds, the microwave signal is only ~50 ns. MEC is a Rogowski coil mea-
surement of magnetron entrance current. The RF power is uncalibrated
and is given in arbitrary units. Camera frame widths are denoted by blue
dashed lines. Late-time current reversal generates significant plasma
within the device.

only where the plasma is relatively dense (~10'#/cm?®) and
warm (~5 eV) [25], [26]. If cold or low-density plasma exists
within the device, it will not radiate enough to be visible on
the framing camera. Cold plasma, however, is likely not con-
tributing greatly to a reduction in device performance. If the
plasma is absorbing energy that otherwise would be converted
to microwaves, it will rapidly increase in temperature.

As initially postulated, the framing camera images do not
indicate significant plasma expansion across the AK gap.
To successfully cross the magnetic field lines and expand into
the gap, this highly ionized plasma would need to be colli-
sional and should rapidly heat up as it becomes the effective
cathode surface. Previous imaging of relativistic magnetrons
has been able to detect this expanding plasma with visible
light diagnostics [12], [25]. In some images presented in this
paper, such as in Fig. 7, it appears there is a low intensity of
plasma filling the AK gap. In reality, it primarily forms along
the surface of the cathode and its end caps. The previously
mentioned parallax effect from the camera position creates
the illusion the plasma has expanded into the AK gap, but
true cathode plasma expansion would actually appear further
to the right, past the outline of the anode vane tips.

While significant expansion was not observed, cathode
plasma formation was evident, particularly for the L-band
anode and MCC-2. It is likely that this plasma caused a
small change in effective cathode radius and slightly detuned
the beam synchronism condition. However, magnetic field
parameter sweeps of the MFRPM indicate a fairly wide range
of operating conditions [15], so a small change in effective
radius should not be enough to explain the rapid decrease in
microwave production.

Surface conditions have been identified as a major contribu-
tor to pulse shortening in HPM devices [9]. The data presented
here were collected in sets of 15-60 shots, with the vacuum

Fig. 6. (a) Frame timing and RF oscillations in shot 15072. (b) Intervane
plasma formation is first observed in frame 5 correlating with a sharp
decrease in microwave intensity. (c) Microwave oscillations restart and
are extinguished during frame 7, as the anode plasma reaches peak
intensity.

chamber only opened to atmosphere between sets. No long-
term conditioning trends were observed, but the first ~3 shots
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Fig. 7. (a) Frame timing and RF oscillations in shot 15104. (b) Intervane
plasma formation again correlates with a sharp reduction in microwave
power. (c) Significant cathode plasma is observed, concentrated in
regions with Glyptal insulating enamel.

of a series often produced unusual results. Typically, the first
few shots of a series were also the first few shots of the day,
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Fig. 8. Axial cross section of a MAGIC PIC simulation of m-mode MFRPM
operation, indicating >200 kV/cm electric fields between anode vanes
during typical magnetron operation with unoptimized extractor. Electron
beam rotates counterclockwise.

and the pulsed power driver also experiences a short daily
“break-in” period, so these anomalies should not be attributed
strictly to anode/cathode conditioning. Qualitatively, plasma
formation after the first few shots was consistent.

Anode plasma was consistently visible on the edges of
the slow-wave structure, indicating electric field enhancement
from the sharp vane edges was contributing to plasma for-
mation. Future anodes should incorporate rounded vanes to
minimize the electric field in these regions.

V. CONCLUSION

Time-integrated visible light imaging of an RPM driven by
a long-pulse Marx bank provided some insight into magnetron
operation and plasma formation, but also captured substantial
emissions well after the relevant microwave event. Time-
resolved measurements, using an ultrafast framing camera,
revealed the formation of intervane plasma which frequently
correlated with a sharp reduction in microwave generation.
While the plasma does not expand enough to fully fill the
cavity and short the vanes, it may be sufficiently disruptive
to change the resonant characteristics of the structure and
shorten the microwave pulse. The change in operating mode
observed during shot 15072 supports this assertion. Addi-
tionally, research on HPM compressors has shown a plasma
column of only 1 mm diameter can be sufficient to disrupt
microwave transmission [27].

Plasma generation at electrical contact points within the
anode structure was also observed. While this is not generally
an issue for hard-tube vacuum electronic devices with welds
and brazing, it demonstrates the importance of making good
electrical contact (or placing poor contacts far from the inter-
action region) in prototypes and university scale experiments.
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Significant plasma formation on vane tips indicates the
need for rounded anode structures to avoid field enhancement.
Despite an axially narrow (~2 cm) emission surface on the
cathode, plasma initiation was routinely observed at the axial
extremes of the 11-cm-long anode vanes.

Pulse shortening remains a substantial challenge for HPM
devices. While the plasma formation mechanisms presented
here may be dominant for this unique microwave source and
pulsed power driver combination, they also highlight potential
problems to be avoided in a variety of HPM source designs.
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