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ABSTRACT

Electrical contact is an important issue to high power microwave sources, pulsed power systems, field emitters, thin film devices and
integrated circuits, interconnects, etc. Contact resistance and the enhanced ohmic heating that results have been treated mostly under steady
state (DC) condition. In this paper, we consider the AC contact resistance for a simple geometry, namely, that of two semi-infinite slab
conductors of different thicknesses joined at z = 0, with current flowing in the z-direction. The conductivity of the two planar slabs may
assume different values. We propose a procedure to accurately calculate the normalized contact resistance under the assumption σ � ωϵ,
where ω is the frequency, σ is the electrical conductivity, and ϵ is the dielectric constant of the material in either channel. We found that in
the low frequency limit, the normalized AC contact resistance reduces to the DC case, which was solved exactly by Zhang and Lau. At very
high frequency, we found that the normalized contact resistance is proportional to

ffiffiffi
ω

p
, in which case the resistive skin depth becomes the

effective channel width, and the physical origin of the contact resistance is identified. The transition between the high and low frequency
limits was explored, where, in some cases, the normalized contact resistance may become negative, meaning that the total resistance is less
than the total bulk resistance expected from the two current channels. In other cases, the numerical data suggest that the normalized
contact resistance is proportional to ω in the transition region. Other issues are addressed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142511

I. INTRODUCTION

Contact problems account for 40% of all electrical/electronic
failures, ranging from small scale consumer electronic devices to
large scale military and aerospace systems.1–3 In pulsed power
systems and high power microwave sources, poor electrical contact
prevents efficient power coupling to the load,4 produces unwanted
plasma,5 and even damages the electrodes. On the largest scales,
faulty electrical contact has caused failure of the Large Hadron
Collider and similarly threatens the International Thermonuclear
Experimental Reactor.6 On the smallest scales, electrical contact and
local heating are very important issues in microelectronics,7,8 inte-
grated circuits,8 thin film devices,9 carbon nanotube10 and carbon
nanofiber based cathodes11 and interconnects,8,12 field emitters,13

thin film-to-bulk contacts,14–17 semiconductor nanolasers,18,19 and
ultrafast and nanoscale diodes.20–22

The quality of a contact is often measured by the contact resis-
tance.1,2 Despite its importance, contact resistance and the enhanced
ohmic heating that results have been treated mostly under steady
state (DC) condition.1,2,23–29 The evaluation of contact resistance in
the AC case is significantly more complex than the DC case. New
features, such as the resistive skin effect and inductive and capacitive

effects, as well as radiation losses, are totally absent in a DC theory.
For the AC case, the simple “a-spot” geometry has received some
attention.25,30–32 The a-spot geometry refers to two current channels,
made of the same materials, joined with each other only through a
circular hole of radius a.1,2 A statistical theory for a collection of
asperities at the interface of two conductors under AC condition was
given by Tang et al.,33 who ignored the all-important skin effects
and the effects of dissimilar materials.

We have initiated a theoretical study of AC electrical contact
using the Cartesian geometry shown in Fig. 1, allowing for contacts
between dissimilar materials. An AC current of frequency ω is
launched from the left channel at a large negative value of z, and it
exits at the right channel at a large positive value of z. The dimen-
sions and the electrical properties (permittivity ε, conductivity σ,
and permeability μ, all assumed real) are specified in Fig. 1. The
two conducting channels, with an interface at z = 0, are surrounded
by vacuum. We have formulated the boundary value problem for
Fig. 1 which satisfies the Maxwell equations in the various regions,
interior and exterior to the current channel. In this paper, we shall
restrict our discussion to the study of resistive loss at the contact in
the regime σ � ωε for both conducting channels. Under this
assumption, we found that the current flow pattern within the
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current channel is essentially unaffected by the solution in the
vacuum region, just like the DC case. We should stress that our
solutions using this simplifying assumption have been spot-checked
against the complete electromagnetic field solutions that we have
constructed for all regions, both exterior and interior to the
channel. We shall further comment on the general case in Sec. IV.

The two-dimensional, planar, model (Fig. 1) gives consider-
able physical insight into the nature of current crowding from DC
to high-frequency conditions. Similar to the DC case,24 we expect
the qualitative features to hold for the cylindrical geometry. This
study also reveals the deleterious effects of conductor misalignment
on the contact resistance, especially at high frequencies. Modulation
at 10 GHz and beyond is being pursued for nanolight-emitting-
diodes for on-chip optical communications,19 making high-
frequency AC contact resistance in that frequency range relevant.

The resistive skin depth δ = (2/ωμσ)1/2 in each conducting
region is an important length scale. It is frequency dependent. The
relative magnitude of δ in the two different regions of the channel
and the transverse dimensions of the channels then strongly affect
the current flow pattern. Therefore, different scalings for the AC
contact resistance are expected for different frequency ranges. This
paper reports some such novel scalings. We interpret them by iden-
tifying the skin depth as the effective channel widths and then use
the corresponding DC scalings.

In Sec. II, we shall first outline the model for the DC contact
resistance, concentrating on its salient properties that will be useful
in the extension to the AC case, which is described next. In Sec. III,
we shall present a few examples of the AC contact resistance, where
the novel scalings are presented. The derivation of these novel
scalings will be given in Appendixes A–C. Concluding remarks are
given in Sec. IV.

II. DEFINITION OF CONTACT RESISTANCE

For the Cartesian geometry shown in Fig. 1, we shall define
the contact resistance, first for the DC case and then for the AC
case. We assume that, in both cases, there is no variation in the
x-direction, and the channel width in the x-direction is W, and that
the channel axial length, L, is sufficiently large that the field solu-
tions no longer have any z-variation at z ¼ +L for the bulk
solution.

A. DC contact resistance

For the DC case, current I0 with a constant, uniform current
density, I0/(2Wd1), enters from the left channel at plane A
(z =−L). This current exits the right channel at plane B (z = L) also
with a constant, uniform current density, I0/(2Wd2). A DC voltage
V is needed to drive this current between planes A and B. The total
resistance, R, between A and B is then

R ;
V
I0

¼ L
2d1Wσ1|fflfflfflffl{zfflfflfflffl}

Bulk

þ Rc

4πWσ2|fflfflffl{zfflfflffl}
Interface

þ L
2d2Wσ2|fflfflfflffl{zfflfflfflffl}

Bulk

, (1)

where the first (last) term on the RHS represents the bulk resis-
tance of the left (right) channel. The middle term of Eq. (1) is
defined as the contact resistance, or the interface resistance, which
is simply the difference between the total resistance (R) and the
bulk resistance of the two current channels. Note that this contact
or interface resistance vanishes if d1 = d2, in which case the DC
current flow (and the DC electric field, which is solely in the z-
direction) is uniform in both channels, and the channels’ bulk
resistance, in series, constitutes the total resistance. Thus, the
contact or interface resistance in Eq. (1) is also called the spreading
resistance (or constriction resistance), as it is a measure of how the
current spreads (or constricts) as it approaches and leaves the
junction.1,2,25

The contact resistance in Eq. (1) is represented by the normal-
ized contact resistance Rc. It has been computed by Zhang and
Lau24 from their exact electrostatic field solution that satisfies the
following boundary conditions (Fig. 1):

σ1Ez,1 ¼ σ2Ez,2, jyj , d1, z ¼ 0, (2a)

Ey,1 ¼ Ey,2, jyj , d1, z ¼ 0, (2b)

Ez,2 ¼ 0, d1 , jyj , d2, z ¼ 0, (2c)

Ey,1 ¼ 0, jyj ¼ d1 , z , 0, (2d)

Ey,2 ¼ 0, jyj ¼ d2, z . 0: (2e)

Equations (2a) and (2b) show, respectively, continuity in the
current flow and in the tangential electric field at the channel inter-
face. Equations (2c)–(2e) state that there is no normal electric field
at all channel–vacuum interfaces. That is, the conduction current
always flows tangentially at the channel–vacuum boundary. It was
found24 that Rc depends only on the ratios d1/d2 and σ1/σ2 (Fig. 1).
Accurate scaling laws for Rc have been constructed from the
numerical solutions of the electrostatic potential for Fig. 1, solved
exactly using the boundary conditions (2a)–(2e).24

An alternative definition of the contact resistance uses the
ohmic power dissipated within the current channel, which can be
obtained from the calculated (AC and DC) field solution for Fig. 1.
This approach is more suitable for the AC case, in which the
“potential” on the surfaces A and B are no longer uniform or

FIG. 1. Two Cartesian current channels, each with length L and joint at z = 0,
are surrounded by vacuum. An AC current of the form I0e�iωt enters the left
surface A and exits the right surface B.
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constant. For the AC case, the total resistance, R, in the channel
may be expressed in terms of the average ohmic power dissipated
within the channel,

P ;
RI20
2

¼ 1
2

ð
volume

σjE2j dV , (3)

where E is the AC electric field over the channel volume,
−L < z < L. The total resistance R obtained from Eq. (3) is then
decomposed into the bulk resistance, Rb1 and Rb2, associated with
the channel, and the remainder is then defined as the contact resis-
tance, Rc,

R ¼ Rb1 þ Rc þ Rb2: (4)

For the DC case, Rb1 and Rb2 are given, respectively, by the
first and third term in the RHS of Eq. (1). Comparing Rc, obtained
from energy consideration [Eqs. (3) and (4)] and from the pub-
lished results by Zhang and Lau24, who used the exact electrostatic
field solution without reference to ohmic loss, we obtain an excel-
lent agreement between the two in several test cases.

B. AC contact resistance

For the AC case, the “potential” on the surfaces A and B in
Fig. 1 is not defined, and we need to use the power dissipation for-
mulation, Eqs. (3) and (4), for an unambiguous identification of
the contact resistance. The conventional definition of potential dif-
ference as Δf ¼ Ð

E � dl does not work when there are skin effects,
since the electric field at y ¼ 0 is different than the electric field at
y ¼ d1, and, therefore, we would obtain different values for Δf
depending on the path we chose. It is possible to choose any gauge
and solve for the potentials in this way, but there are no real bene-
fits in doing so as the resistance will not easily arise from them.

Like the DC case, the power P in Eq. (3) requires the field sol-
ution E everywhere within the channel (Fig. 1). However, for the
AC case, the boundary conditions to be satisfied need to be modi-
fied from Eqs. (2a)–(2e). In general, Ek and (σ � iωϵ)E? need to
be continuous across any boundary. This means that there can now
be currents that flow into the conductor from the conductor–
vacuum interfaces. This complicates the problem by a significant
degree as fields outside the conductors now affect fields inside and,
therefore, need to be calculated. However, in this paper, we will
focus on good conductors (σ . 104 S/m, ϵ/ϵ0 of order unity) and
frequencies of up to 1 THz. For these values, we get ωϵ � σ that
allows us to ignore the fields in the vacuum once more, like the DC
case, and use the same method of series expansion as in Zhang and
Lau24 to obtain the AC solution under the assumption ωϵ � σ.
Fields, however, need to satisfy the Helmoltz instead of the Laplace
equation, which will result in skin effects for sufficiently high fre-
quencies. Solving for the fields everywhere and accounting for all
the boundary conditions properly are possible but doing so only
yields an error of up to 0.000 042% in contact resistance when com-
pared to the simplified solution (see Appendix A where the full AC
solutions are outlined).

With the assumption ωϵ � σ on both channels, we may now
construct the bulk resistance for the AC case, Rb1 and Rb2 in

Eq. (4), as follows. First, for large values of jzj (Fig. 1), the AC elec-
tric field has only a z-component which is uniform in z but non-
uniform in y. It is shown in Appendix B that this bulk solution is
given by

Ez,1,b ¼ I0κ1

2Wσ1

cos(κ1y)
sin(κ1d1)

,

Ez,2,b ¼ I0κ2

2Wσ2

cos(κ2y)
sin(κ2d2)

,

(5)

where

κ2
1 ¼ μ1ϵ1ω

2 þ iωμ1σ1 ffi iωμ1σ1 ; 2i/δ21,

κ2
2 ¼ μ2ϵ2ω

2 þ iωμ2σ2 ffi iωμ2σ2 ; 2i/δ22,
(6)

which includes the dominant skin effect, i.e., assuming
σ1,2 � ωϵ1,2. The skin depth for each material is

δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/σ1μ1ω

p
,

δ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/σ2μ2ω

p
:

(7)

Upon using the bulk field solution (5) into the integral (3) for
each channel, we find the AC bulk resistance for each channel to be
(see Appendix B)

Rb1 ¼ L
2Wσ1δ1

sinh
2d1
δ1

� �
þ sin

2d1
δ1

� �

cosh
2d1
δ1

� �
� cos

2d1
δ1

� � ,

Rb2 ¼ L
2Wσ2δ2

sinh
2d2
δ2

� �
þ sin

2d2
δ2

� �

cosh
2d2
δ2

� �
� cos

2d2
δ2

� � ,

(8)

which is to be used in Eq. (4). Note that Eq. (8) reduces to the DC
bulk resistance in Eq. (1) in the DC limit ω ! 0 so that δ1 ! 1 and
δ2 ! 1. At high frequencies, δ1 , d1 and δ2 , d2, Eq. (8) shows
that the bulk resistances, Rb1 and Rb2, increase with ω, like

ffiffiffi
ω

p
.

The total resistance, R, may then be obtained from Eq. (3)
after solving for the AC field solution for the entire region,
−L < z < L (Fig. 1), and the contact resistance, Rc, may be then
obtained by substituting Eq. (8) into Eq. (4). In the numerical
examples given in Sec. III, we will again represent this AC contact
resistance,

Rc ¼ Rc

4πWσ2
, (9)

in terms of the normalized resistance Rc so that this AC value can
immediately be compared with the DC value given in Eq. (1).
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III. NUMERICAL EXAMPLES OF AC CONTACT
RESISTANCE

Numerical examples of the AC contact resistance are presented
for three selected cases: (A) d1 ¼ d2, (B) d2 . d1, and (C)
d2 � d1 � d1, with σ1 ¼ σ2. Case (A) shows the distinct nature of
AC contact resistance, as the DC contact resistance equals zero
in this case. It also reveals the surprising result that the contact
resistance can be negative. Case (B) shows various scalings with
frequencies, and Case (C) provides a closer examination of the fre-
quency scaling and offers a quantification of AC contact resistance
for slightly uneven surfaces.

A. Case A. d1 = d2 = d

The setup for this case is shown in Fig. 2. This case is trivial
for the DC case in which the contact resistance is zero as the bulk
fields are uniform, and, therefore, the sum of the bulk resistance
becomes the total resistance. For the AC case, however, the bulk
fields shown in Eq. (5) do not satisfy the appropriate boundary
conditions for σ1 = σ2 because of the different skin depths in each
material. Without loss of generality we will assume σ1 . σ2. By
satisfying the boundary conditions on the interface z ¼ 0, we can
obtain the normalized contact resistance as a function of frequency,
as shown in Fig. 3.

There are a few interesting features in Fig. 3. First, for low fre-
quencies, we obtain Rc ¼ 0. This is because at low frequencies, the
skin depth is large, and, therefore, the fields are merely oscillating
uniform fields. This was found to be true for d/δ1 , 1. For high
frequencies, we observe a constant contact resistance. This can be
explained: at high frequencies, both conductors demonstrate strong
skin effects, and we may then take the small skin depths (δ1,2) as
the equivalent channel widths (d1,2) in a DC case and then use the
scaling laws of the DC contact resistance to interpret the numerical
results of the AC case. Note that the ratio of the skin depths is
constant with frequency and that for the DC case, the contact resis-
tance is only a function of d2/d1.

24 Therefore, as we change the fre-
quency, the skin depths also change but not their ratio so the
contact resistance is unchanged at high frequencies. This high-
frequency constant contact resistance was observed for d/δ2 . 4.
Note that the spreading resistance shown in Fig. 3 approaches a

constant at high frequencies, whereas the bulk resistance increases
with frequency according to Eq. (8); the relative effect of spreading
resistance diminishes at high frequencies. We shall also see in
Fig. 11 (in Appendix C) that, in a slightly different context, the
spreading resistance also approaches a constant at high frequencies,
whereas the bulk resistance increases with frequencies. Constriction
resistance at very small skin depths were explored by Zhang et al.25

and Timsit1 (p. 91).
For intermediate frequencies, the contact resistance transitions

between the two constant values at low and high frequencies. A
further interesting behavior is observed at the lower end of this transi-
tion: we obtain Rc , 0 (Fig. 3). This, of course, does not indicate an
overall power gain but a current distribution that is less dissipative
compared to the bulk currents. This can be seen in Fig. 4 that shows
the current flow pattern when the AC contact resistance is negative
(a), zero (b), and positive (c). Figure 4(b) shows zero AC contact
resistance, meaning that the total AC resistance in the two conductors
happens to be equal to the sum of their respective AC bulk resistance.
Compared with Fig. 4(b), Fig. 4(c) [Fig. 4(a)] exhibit more (less)
current crowding than Fig. 4(b), and, therefore, its contact resistance
is positive (negative) in comparison. That is, Fig. 4(a) [Fig. 4(c)] will
produce less (more) electrical heating than that expected from the
bulk current of the two conductors. This unexpected reduction in
ohmic heating could be exploited in technical applications.

B. Case B. d1 < d2

This is the more general case. We can numerically solve the
boundary conditions (2a)–(2e), assuming the bulk currents in (5)
to obtain the remaining fields in both conductors and use those
remaining fields to find the normalized AC contact resistance by
solving (3) and (4) using (8). Doing so, we obtain Rc as a function
of ω in Fig. 5.

There are three distinct regions in Fig. 5. For low frequencies,
the contact resistance is constant and equal to the DC contact

FIG. 2. The setup for d1 ¼ d2 ¼ d.

FIG. 3. Normalized contact resistance vs frequency for d1 ¼ d2 ¼ d ¼ 1 mm
and σ1 ¼ 3:69 � 107 S/m.
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resistance.24 This is because the skin depths are large and the
slowly oscillatory fields are basically the uniform DC fields. For
high frequencies, we observe Rc / ffiffiffi

ω
p

. To see this, we note that at
high frequencies, all currents will be limited to the surface of each
conductor because of skin effects. The current profile will resemble
Fig. 6. The currents along the top of each conductor are the bulk
currents and will not contribute to the contact resistance. The
current flowing between points K and M in Fig. 6 will be solely
responsible for the dissipative losses that result in contact resis-
tance. In Appendix C, we show that

Rc ¼ 2π
d2 � d1

δ2
/ ffiffiffi

ω
p

: (10)

For intermediate frequencies, the contact resistance transitions
between the two asymptotes (Fig. 5).

C. Case C. d2−d1≪d1, σ1 = σ2 = σ

This case represents a single conductive medium with an
uneven joint, as seen in Fig. 7.

As in case B, we can solve for the fields and contact resistance
as a function of frequency. Doing so, we obtain Rc as a function of
ω, as seen in Fig. 8.

At low frequencies, we again obtain a constant value for Rc

that is equal to the DC contact resistance as in cases A and B. For
very high frequencies (δ � d2 � d1 � d1), we obtain the frequency
dependence described by (10), since the field profiles will look
similar to those seen in Fig. 6. In this regime, the skin depth is
much less than the “misalignment” (d2 � d1). It is then not surpris-
ing that the constriction resistance may far exceed the DC value,
even though this misalignment is only 0.5% of the current channel
width. For intermediate frequencies (d2 � d1 � δ � d1), we
observe Rc / ω from the numerical data (the dashed-dotted curves

FIG. 4. Current flow patterns for Fig. 2 which show (a) negative (ω ¼ 1:33� 105 rad/s, Rc ¼ �0:053), (b) zero (ω ¼ 2:66� 105 rad/s, Rc ¼ 0), and (c) positive
(ω ¼ 5:32� 105 rad/s, Rc ¼ 0:228) AC contact resistance. Here, d1 ¼ d2 ¼ 1 mm, σ1 ¼ 10� σ2 ¼ 3:69� 107 S=m.
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in Fig. 8). So far, we were unable to derive this frequency scaling
even though for these intermediate frequencies, the current profile
will look like Fig. 9. Note that the Rc / ω scaling for the intermedi-
ate frequency regime is also suggested in the three curves in Fig. 5.

IV. CONCLUDING REMARKS

In this paper, we analyze the contact resistance between two
Cartesian current channels of dissimilar materials and different
widths, under the AC condition. Because of skin effects, even the bulk
current densities are different from the DC case, leading to different
expressions for the bulk resistances [Eq. (8)]. Assuming σ � ϵω, we
can ignore currents flowing into conductor–vacuum interfaces,
thereby simplifying the problem considerably. Three different cases
were studied to obtain scaling laws for contact resistance as a function
of frequency. For equal channel widths, d1 ¼ d2, the low frequency

limit always yields a zero contact resistance, which rises to a nonzero,
constant value when the frequency is increased to a sufficiently high
level. In this transition, negative contact resistance was observed and
explained. In the general case, where d1 = d2, we obtain the DC
contact resistance at low frequencies but find the normalized contact
resistance Rc / ω1/2 at very high frequencies. For a slightly uneven
joint, d2 � d1 � d1, σ1 ¼ σ2, we obtain the DC contact resistance at
low frequencies, Rc / ω at intermediate frequencies, and Rc / ω1/2 at
high frequencies. The contact resistance is significantly more difficult
to compute if we relax the assumption σ � ϵω.

When we are able to unambiguously define the AC contact
resistance, by considering the ohmic power loss, the derived
contact resistance may then be considered as a lumped circuit
parameter. As of this writing, we were unable to find suitable and
unambiguous definitions for the other lumped circuit parameters,
the inductance and capacitance, for the current channel shown in
Fig. 1, even under the assumption σ � ϵω.

FIG. 5. Rc vs ω for various parameters. For all cases, d1 ¼ 1 mm and
σ1 ¼ 3:69� 107 S/m. Dotted lines represent the DC contact resistance for
each case. Dashed lines represent Eq. (10) for each case.

FIG. 6. Schematic drawing of the current profile near the channel surface in
each conductor for high frequencies.

FIG. 7. An uneven join for a single material for case C.

FIG. 8. Rc vs ω for an uneven joint. The dotted line represents the DC value
for contact resistance, while the dashed line represents Eq. (10). The dashed-
dotted line represents the fitted line Rc ¼ A� ω, where A ¼ 2:28 d2�d1

δ

� �2
s.

Here, d1 ¼ 1 mm and σ1 ¼ 3:69� 107 S/m.
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In Fig. 1, the point (y, z) = (d1, 0) is a “triple point,” the inter-
section of two different materials with vacuum.34 We have exam-
ined the AC solutions at this triple point in some detail. This
problem is of some practical and computational interest, but is
beyond the scope of this paper.

Once more, if the conductivity σ is so small (like a semicon-
ductor) or ω is so high (like submillimeter waves) that the simplify-
ing assumption σ � ϵω is no longer valid, then the contact
resistance calculation will become very difficult. For one thing, the
radiative loss, which is negligible in this paper, may need to be
accounted for in the consideration of total power balance.
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APPENDIX A: FULL AC SOLUTION

First, let us consider the DC case [Fig. 10(a)].
To satisfy the boundary conditions (2a)–(2c), we include two

fields in each conductor with the following form:

Ez,A ¼
X1
n¼1

An cos
nπy
d1

� �
e
nπz
d1 ,

Ey,A ¼
X1
n¼1

�An sin
nπy
d1

� �
e
nπz
d1 ,

(A1a)

in the left conductor and

Ez,B ¼
X1
n¼1

Bn cos
nπy
d2

� �
e�

nπz
d2 ,

Ey,B ¼
X1
n¼1

Bn sin
nπy
d2

� �
e�

nπz
d2 ,

(A1b)

in the right conductor. These fields are chosen to enforce symmetry
around the y ¼ 0 plane, as well as to ensure that (2d) and (2e) are
satisfied. Field “A” is meant to satisfy (2b) and is, therefore, a
Fourier representation over (z ¼ 0, y [ [0, d1]), while field “B” is
meant to satisfy (2a) and (2c) and is, therefore, a Fourier represen-
tation over (z ¼ 0, y [ [0, d2]). In Fig. 10(a), these regions can be
seen. Next, we truncate the Fourier series for each field to N terms,
since convergence was proven in Ref. 24. This allows us to use
(2a)–(2c) to obtain a 2N � 2N matrix that can be inverted to yield
An and Bn, and therefore the fields everywhere.

Moving on to the AC case, the boundary conditions now have
the following form [Fig. 10(b)]:

Ey,1 ¼ Ey,2, z ¼ 0, jyj , d1, (A2a)

FIG. 9. The current profiled for d2 � d1 � δ � d1.

FIG. 10. The colored regions, which
are considered, as well as the boun-
dary terms for the DC case (a) and the
AC case (b).
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(σ2 � iωϵ2)Ez,2 ¼ (σ1 � iωϵ1)Ez,1, jyj , d1
�iωϵ0Ez,3, d1 , jyj , d2

�
, (A2b)

Ez,1 ¼ Ez,3, jyj ¼ d1, z , 0, (A2c)

(σ1 � iωϵ1)Ey,1 ¼ (σ3 � iωϵ3)Ey,3, jyj ¼ d1, z , 0, (A2d)

Ey,2 ¼ Ey,3, z ¼ 0, d1 , jyj , d2, (A2e)

Ey,3 ¼ Ey,4, jyj ¼ d2, z , 0, (A2f)

(σ2 � iωϵ2)Ey,2 ¼ �iωϵ0Ey,4, (A2g)

Ez,4 ¼ Ez,3 z , 0
Ez,2, z . 0

, jyj ¼ d2

�
, (A2h)

where E3 corresponds to fields within (z [ [�L, 0], y [ [d1, d2])
[red region in Fig. 10(b)] and E4 to fields within (z [
[�L, L], y [ [d2, 1]) [green region in Fig. 10(b)]. To satisfy all of
the above, we need to include a field that is a Fourier transform for
each boundary condition. All the regions that have a Fourier trans-
form over them can be seen in Fig. 10(b). The resulting total Ez,1
in the conductor to the left is

E1,z ¼ I0κ2

2Wσ2

cos(κ2y)
sin(κ2d2)

(bulk solution)

þ
X1
n¼1

An cos
nπy
d1

� �
e
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nπ
d1

� �2
�κ2

1

q
[meant to satisfy (A2a)]

þ
X1
n¼1

A(2)
n sin

(2n� 1)πz
2L

� �
e
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2n�1)π

2Lð Þ2�κ21

q

[meant to satisfy (A2d)]:

Numerically, the last infinite sum is very small for all cases
studied in this paper. Truncating all series to N once more and
using Eqs. (A2a)–(A2h) and all of the fields that were included, we
can obtain a 8N � 8N matrix which can again be solved numeri-
cally. Doing so, however, requires 16 times more memory and ∼64
times more time than the DC case with the same N. For σ � ωϵ,
Eqs. (A2a)–(A2h) turn into (2a)–(2e) and we only need fields
“A” and “B” again and then use the matching techniques given in
Ref. 24. Note that the “A” and “B” solutions satisfy the Laplace
(Helmholtz) equation for the DC (AC) case. Comparing the full solu-
tion utilizing all eight Fourier fields to the simplified solution for σ �
3:69� 105 and ω/2π 	 10THz, we obtain contact resistances within
0.000042% of each other, for a few test cases. For semiconductors, the
full solution would need to be used, but L needs to be much larger
consequently and a larger N needs to be used for proper accuracy.

APPENDIX B: BULK SOLUTIONS FOR THE AC CASE

Solving Maxwell’s equations under the AC condition in a con-
ductor yields fields that are proportional to

F(z, y) ¼ eikzzeikyy ,

k2z þ k2y ¼ μϵω2 þ iωμσ: (B1)

For the bulk currents in each conductor, we have kz ¼ 0
and Ey ¼ 0. Furthermore, fields need to be symmetric around
the y ¼ 0 axis. This means that the only fields in each
conductor are

Ez,1,b ¼ E1 cos(κ1y), jyj , d1,

Ez,2,b ¼ E2 cos(κ2y), jyj , d2,

κ2
1 ¼ μ1ϵ1ω

2 þ iωμ1σ1,

κ2
2 ¼ μ2ϵ2ω

2 þ iωμ2σ2,

(B2)

where E1 and E2 are complex constants. To find their respecting
values, we solve

W
ðd1
�d1

σ1Ez,1,b dy ¼ I0,

W
ðd2
�d2

σ2Ez,2,b dy ¼ I0,

(B3)

to obtain

E1 ¼ I0κ1

2Wσ1

1
sin(κ1d1)

,

E2 ¼ I0κ2

2Wσ2

1
sin(κ2d2)

,

(B4)

which can be used with (B2) to yield Eq. (5) of the main text. To
obtain the bulk resistance, we first consider σ � ωϵ so that (6) gives

κ1 
 1þ i
δ1

,

κ2 
 1þ i
δ2

:

(B5)

The average power dissipated in each conductor will be

P ¼ σ

ð
V

jE2j
2

	 

dV : (B6)

Using this, we now obtain the time averaged power per unit
length for the left conductor

dP1
dl

¼ I20
4Wσ1δ

2
1

ðd1
�d1

cos
1þ i
δ1

y

� �
cos

1� i
δ1

y

� �

sin
iþ 1
δ1

d1

� �
sin

i� 1
δ1

d1

� � dy:
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Using

sin((1þ i)x)sin((1� i)x) ¼ 1
2
(cosh(2x)� cos(2x)),

cos((1þ i)x)cos((1� i)x) ¼ 1
2
(cosh(2x)þ cos(2x)),

we obtain

dP1
dl

¼ I20
2Wσ1δ1

sinh
2d1
δ1

� �
þ sin

2d1
δ1

� �

cosh
2d1
δ1

� �
� cos

2d1
δ1

� � :

Equating this to RI20
2L because of (3), we can obtain

Rb1 ¼ L
2Wσ1δ1

sinh
2d1
δ1

� �
þ sin

2d1
δ1

� �

cosh
2d1
δ1

� �
� cos

2d1
δ1

� � : (B7)

Similarly, for the second conductor one can obtain

Rb2 ¼ L
2Wσ2δ2

sinh
2d2
δ2

� �
þ sin

2d2
δ2

� �

cosh
2d2
δ2

� �
� cos

2d2
δ2

� � : (B8)

Equations (B7) and (B8) are Eq. (8) from the text.

APPENDIX C: Rc ∝ω1/2 DERIVATION

As ω increases, δ1 and δ2 will decrease. This means that at suf-
ficiently high frequencies, the following will be true:

δ1 � d1,

δ2 � d2,

δ2 � d2 � d1:

(C1)

When the above are true, the current will be confined to the
edges of the conductors. Such a current flow can be seen in Fig. 6
of the main text. The horizontal currents in each conductor are the
bulk currents, which do not contribute to the contact resistance.
The only remaining currents to consider are the vertical current
between points M and K as well as current perturbations to
attain transitions that satisfy all relevant boundary conditions. The
latter perturbations, however, will be confined to areas that are in
order of δ21 or δ22, whereas the vertical current will occupy an area
in the order of (d2 � d1)δ2. From Eq. (C1), δ22 � (d2 � d1)δ2.
Furthermore,

δ21
(d2 � d1)δ2

/ ω�1
2: (C2)

For sufficiently high frequencies, we can also, therefore,
assume δ21 � (d2 � d1)δ2. Because of the above, we can assume
that the contact resistance will primarily arise from the vertical
current between points M and K, which we shall explicitly show
toward the end of this Appendix. The current distribution in this
area is approximately

J ¼ I0
Wδ2

e�
z
δ2 , (C3)

which will dissipate a total power of

P ¼
ðb
a
dy

ðW
0
dx

ð1
0

J2

σ2
dz ¼ (b� a)I20

2Wδ2σ2
: (C4)

Equating the above with RcI20
2 as per (3) and normalizing using

(9), we obtain

Rc ¼ 2π
b� a
δ2

/ ω
1
2, (C5)

which is Eq. (10) in the main text. Subtracting Eq. (C5) from the
data on Fig. 5 yields Fig. 11. This gives the remaining constriction
resistance near M and near K, which appears to attain constant
values for sufficiently high frequencies. Note that the significant
drop in constriction resistance for d2/d1 ¼ 30 and σ2/σ1 ¼ 5 are
numerical artifacts: changing the number of terms that are kept in
the Fourier series changes the onset of this effect. This is because
the skin depth becomes too small compared to the thickness of the
materials (for ω ¼ 108 rad/s, δ2/d2 ¼ 3� 10�4). A comparison of
Fig. 5 and Fig. 11 demonstrates that constriction effects are insig-
nificant compared to the vertical skin current that flows between
the points M and K. The feature that the constriction resistance
approaching a constant value at high frequencies was revealed in
and also commented on in Fig. 3. It was also explored in Ref. 25
and in p. 91 of Ref. 1.

FIG. 11. Residual normalized contact resistance after subtracting Eq. (C5).
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