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An electron beam in the slow wave structure of a traveling wave tube may be subjected to absolute

instability at the lower and upper band edges, where the group velocity is zero. From a careful re-

examination of the immediate vicinity of these band edges, we use the Briggs-Bers criterion to

show that, contrary to previous findings, an absolute instability may arise at the lower band edge if

the beam current is sufficiently high, even if the beam mode intersects with the circuit mode with a

positive group velocity. However, the upper band edge was found to be more susceptible to abso-

lute instability than the lower band edge. The threshold condition for the onset of absolute instabil-

ities is derived analytically at both band edges. The Green’s function shows possible transient

temporal growth with an exponentiation rate proportional to t1/3, whether or not the band edge is

subject to an absolute instability. Published by AIP Publishing. https://doi.org/10.1063/1.5028385

I. INTRODUCTION

The collective interaction of an electron beam with a peri-

odic structure is central to the generation of coherent radiation,

from GHz to THz and beyond.1 It is also an important consid-

eration for electron beam stability in RF linacs and induction

accelerators.2 In a periodic structure, the edges of the pass band

of the structure modes exhibit zero group velocity in the disper-

sion diagram, which is an x vs k plot, where x is the frequency

and k is the axial wave number.3 When the beam mode,

x¼ kv, where v is the electron velocity of the beam, intersects

with the structure mode near a band edge, band edge oscillation

may result from an instability.4–6 For a traveling wave tube

(TWT) amplifier, these unwanted oscillations are to be

avoided. On the other hand, these band edge oscillations have

also been considered as a source of coherent radiation.7,8

The circuit mode of a coupled cavity TWT is shown in

Fig. 1, whose lower and upper band edges are labeled as

Points A and B, respectively. The beam mode, x¼ kv, inter-

sects with the circuit mode in a forward wave amplifier at

operating point Q, which lies between A and B. Potential

excitation of absolute instability at band edges A and B for

such a forward wave amplifier have been studied by

Kuznetsov et al.,5 and by Hung et al.6 using the Briggs-Bers

criterion.9,10 Both papers reported that, for an operating point

Q, an absolute instability can occur at the upper band edge

but not at the lower band edge. Since the lower band edge

was (erroneously) perceived as to be free of absolute insta-

bility, we attempted to assess the possible transient growth at

the lower band edge. In this re-examination of the lower

band edge, we discovered that the lower band edge does suf-

fer from absolute instability when the beam current is suffi-

ciently high, contrary to the earlier findings. This paper

reports this revised study. In addition, we present the newly

derived stability criterion for the onset of absolute instability

at both band edges, from which we conclude that the upper

band edge is more susceptible to absolute instability than the

lower band edge. We also show transient temporal growths

with an exponentiation rate proportional to t1/3, whether or

not the band edge is subject to an absolute instability.

Transient growth at a fractional power of time is an

interesting characteristic at the band edges, a possibility sug-

gested by Hung et al.6 A zero group velocity at the band

edge means that, electromagnetically, a unit in a periodic

structure is isolated from its neighbor. Information is carried

only by the beam. This is precisely the condition in the for-

mulation of the cumulative beam breakup instability, origi-

nally studied by Panofsky and Bander for RF linacs,11 which

was extended to high current induction accelerators by Neil

et al.,12 and to linear colliders by Chao et al.13 All of these

authors found the fractional power of growth in time, and

their main results may all be recovered in a unified analysis

by assuming a zero group velocity in the structure mode in a

mode-coupling analysis.14 Note that instability whose ampli-

tude exponentiates at a fractional power of time (at a fixed

position) is not covered by the Briggs-Bers criterion,9,10

which only governs the existence of instability that exponen-

tiates as a linear function of time. Thus, our study provides a

first demonstration of transition from exponential growth at

FIG. 1. The lower band edge (A), the upper band edge (B), and the operating

point (Q) at which the beam mode intersects with the circuit mode in a cou-

pled cavity TWT. kL is the phase shift per period.
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the fractional power of time to simple exponential growth

when the band edge suffers from absolute instability, and

from exponential growth at the fractional power of time to

stabilization when the band edge is free from absolute insta-

bility. In fact, it is this interesting transition, not covered by

the Briggs-Bers criterion, which prompted our re-

examination of the band edge oscillations in the first place.

We should stress that the effects of end reflections are

ignored in this paper. That is, we assumed that the system is

infinitely long, as in the Briggs-Bers criterion. This is a seri-

ous limitation for TWT stability analysis because the circuits

are poorly matched at a band edge.

Section II presents the model and the stability criterion

for the onset of absolute instability at the lower and upper

band edges, A and B (Fig. 1). There, we show that the upper

band edge is more susceptible to absolute instability than the

lower band edge. Section III presents the Green’s function

constructed from the dispersion relation. Its asymptotic form

shows the transition from transient exponentiation at the

fractional power of time to simple exponential growth (to

decay) when the band edge is (is not) subject to an absolute

instability. Section IV presents the concluding remarks. The

details of the derivations are given in the Appendix.

II. EXISTENCE OF ABSOLUTE INSTABILITY

For interactions sufficiently close to the band edges,

either at A or at B, the circuit mode dispersion relation can

be well approximated as a hyperbola in the x-k plane in the

vicinity of A or B (Fig. 1). For a wave-like perturbation of

the form eixt�ikz, the hot tube dispersion relation, near A or

B, may then be represented as6

D x; kð Þ � x� kvð Þ2 x� xmð Þ2 þ 2D x� xmð Þ
h

�r2 k � kmð Þ2
i
� x4

m� ¼ 0 ; (1)

where xm; kmð Þ designates the band edge A or B, r and D are

the fitting parameters for the circuit mode dispersion relation

at A or B, and � is the dimensionless coupling constant

between the beam mode (x¼ kv) and the circuit mode which

is represented by the square bracket of Eq. (1). Note that in

Ref. 6, xm is defined as the focus of the hyperbola that repre-

sents the circuit mode; this focus is xm � D in the present

paper. For the lower (upper) band edge A (B), both D and �
are positive (negative).6 Note that the dimensionless cou-

pling constant � is proportional to the beam current. It

remains finite at the band edges in a careful analysis. Away

from the band edges, its magnitude is approximately equal to

2C3, where C is Pierce’s gain parameter in a TWT.3,15,16

We next applied the Briggs-Bers criterion9,10 to the dis-

persion relation, Eq. (1). With x ¼ xmð1þ yÞ and k ¼ kmð1
þxÞ, Eq. (1) is non-dimensionalized to read

D x;yð Þ� y�uxþ1�uð Þ2 y2þ2dy�q2x2
� �

��¼0; (2)

where u¼ kmv/xm, d ¼D/xm, and q ¼ kmr/xm. The beam

mode and the circuit modes are shown in Fig. 2(a) for the

lower band edge and in Fig. 2(b) for the upper band edge. In

these plots, and in the numerical examples below, we used

the parameters in the study by Hung et al.6 For the lower

band edge, D=2p ¼ 7:365 GHz, r ¼ 8:6973� 109 m=s, km

¼ 1:78 mm�1, and xm=2p ¼ 24:24 GHz. For the upper

band edge, D=2p ¼ �7:365 GHz, r ¼ 8:6973� 109 m=s, km

¼ 3:560 mm�1, and xm=2p ¼ 36:96 GHz.

To apply the Briggs-Bers criterion on the existence of

absolute instability, we first solve the system9,10

D x; yð Þ ¼ 0

@D

@x
¼ 0;

(3)

which will yield eight pairs of solutions ðxs; ysÞ. xs is guaran-

teed to be a double root (or higher order root) of Dðx; yÞ ¼ 0

for y¼ ys. Such a double root (or higher order root) implies

absolute instability if

• ys has a negative imaginary component and
• Taking the imaginary component of y from ys to minus

infinity, at least a pair of x root of Dðx; yÞ ¼ 0 splits from

the double (or multiple) root xs to opposite imaginary

infinites.

Specifically, the absolutely unstable solutions will have

a normalized growth rate of ImðysÞ.
We apply numerical methods to check the Briggs-Bers cri-

terion and then analytically find the threshold value of � for the

onset of absolute instability. The details of the derivation are

given in the Appendix. We summarize the results below.

We confirmed the well-known result that absolute instabil-

ity always occurs when the beam and circuit modes intersect at

a negative group velocity point (kL
p 62 1; 2½ � for the example in

Fig. 1) for all nonzero beam current. For interactions with posi-

tive group velocity (kL=p 2 ð1; 2Þ), the absolute instability is

found for both the upper and lower band edges. The normalized

threshold current is analytically calculated as

�lower ¼
u 1� uð Þ2 � 2d 1� uð Þ
� �

2q

0
@

1
A

2

; (4)

for the lower band edge and as

�upper ¼ �
27

256
j4u2q2

j ¼
�8u dþ u� 1ð Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16d2u2 � 2q2 u� 1ð Þ2 þ 2d u� 1ð Þ

� �r

8u2 þ q2
;

(5)

for the upper band edge.
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Figure 3 shows that the threshold e for the upper band

edge is orders of magnitude smaller than it is for the lower

band edge, for a similar deviation of the operating point, Q,

from points A and B in Fig. 1. This implies that the upper

band edge is significantly more prone to absolute instability

than the lower band edge. While the dispersion relation (1)

for the upper and lower band edges is normalized differently,

for the same current, the value of e typically differs only by a

factor of order unity between the lower and upper band

edges.

III. TEMPORAL EVOLUTION OF GREEN’S FUNCTION

When the TWT is not subjected to an absolute instabil-

ity, an initial perturbation may still undergo transient growth

(at a fixed position z) before the perturbation is convected

away. There will also be transient growth in the perturba-

tions before simple exponential growth when an absolute

instability is present. The Green’s function, which is the

response to an impulse excitation at t¼ 0 and z¼ 0, would

show both properties.9,10 From the dispersion relation, Eq.

(1), the Green’s function may be constructed9–11,14

G z; tð Þ ¼
ð

dx
ð

dk
ei xt�kzð Þ

D x; kð Þ /
ð

dx ei xt�k xð Þzð Þ; (6)

where k(x) is the solution to D(x, k)¼ 0. In the evaluation

of the Green’s function, Eq. (6), it is found that the dominant

term in the exponents of the asymptotic expansion of the last

integral of Eq. (6) gives an adequate approximation for the

temporal evolution, including exponentiation at the frac-

tional power of t.11,14,17 Thus, we use the saddle point

method and approximate Eq. (6) as

G z; tð Þ / ei xst�kszð Þ; (7)

where (xs, ks) is the meaningful root that satisfies

D xs; ksð Þ ¼ 0;

@D

@x
þ t

z

@D

@k

� �				
xs;ks

¼ 0:

We express the magnitude of Eq. (7) in exponential form,

exp½kmzf Tð Þ�, where T ¼ xmt
kmz. Figure 4(a) shows the time

dependence of f(T) for the lower band edge when it is stable,

marginally stable, and unstable against absolute instability.

In all three cases, f(T) � T1/3, transiently [Fig. 4(a)]. The

same is true in the upper band edge, as shown in Fig. 4(b).

Note that these explicit calculations of the Green function

validated the stability criterion [Eqs. (4) and (5)]. Figures

4(a) and 4(b) show the transition from the transient exponen-

tiation at a fractional power of t (at fixed z) to simple expo-

nential growth when there is an absolute instability in the

sense of Briggs and Bers. When the TWT is not subjected to

an absolute instability, an initial perturbation may still

undergo transient growth (at a fixed position z) before the

FIG. 2. Normalized dispersion relation for the circuit mode and beam mode at different beam velocities for (a) left, lower band edge, and (b) right, upper band

edge.

FIG. 3. Threshold values of � for the lower band edge (v < xm=km) and

upper band edge (v > xm=km). The phase velocity of the circuit mode at

either band edge is xm=km.

072102-3 Antoulinakis et al. Phys. Plasmas 25, 072102 (2018)



perturbation is convected away, as also shown in Figs. 4(a)

and 4(b).

Alternatively, we can express Eq. (7) in exponential

form, exp½xmt gðZÞ�, where Z ¼ kmz
xmt and g(Z), as shown in

Fig. 5. As seen from Figs. 5(a) and 5(b), gðZÞ will have very

similar shapes for unstable and stable cases and for both

lower and upper band edges. These two figures essentially

give the spatial distribution of the logarithm of the Green

function as given by Eq. (7), from the beam head (Z¼ 1 or
z
t
¼ xm

km
ffi v) to the beam tail (Z¼ 0) in a continuous beam.

The key difference between stability and instability lies close

to Z ¼ 0, i.e., as t!1: Thus, the cases where g 0ð Þ > 0

correspond to absolute instability, whereas the cases where

g Zð Þ � 0 for some Z < Z0 correspond to the absence of

absolute instability. Note that the lower band edge has larger

exponents in the Green’s function; it is caused by the much

higher values of � which are required to excite an absolute

instability.

IV. CONCLUDING REMARKS

In this paper, we show that the Green’s function, at a

fixed position z, exponentiates transiently at a rate propor-

tional to t1/3, when the beam mode intersects the circuit

FIG. 4. f(T) for (a) left, the lower band edge, with v ¼ 0:99xm

km
; (b) right, upper band edge, with v ¼ 1:01xm=km. Note that � is roughly 2C3, where C is the gain

parameter. A comparison of � at marginal stability between the two shows that the upper band edge is more susceptible to absolute instability than the lower

band edge.

FIG. 5. gðZÞ for three cases according to the Briggs-Bers criterion: unstable, marginally stable, and stable. (a) Left, the lower band edge, with v ¼ 0:99xm=km

and (b) right, the upper band edge, with v ¼ 1:01xm=km.
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mode at a point very close to the band edge, regardless of

whether there is an absolute instability or not. This statement

applies to both upper and lower band edges, and the transient

growth will turn into simple exponential growth if there is an

absolute instability but will decay in time if absolute instabil-

ity is absent. This may be understood as follows: Very close

to the band edge, the dispersion relation for the circuit mode

behaves like a straight line, x� xm ¼ 0, i.e., it has zero

group velocity, and the beam-circuit interaction may then be

described by, when written in the form of Ref. 14,

D x; kð Þ � x� kvð Þ2 x2 � x2
m


 �
� x4

m� ¼ 0 ; (8a)

whose Green’s function indeed exponentiates as t1/3, first dis-

covered by Panofsky and Bander.11

If one still assumes operation very close to the band

edge, so that the assumption of zero group velocity still holds

(i.e., x� xm ¼ 0) but includes the “space charge effects” in

the beam mode, Eq. (8a) is modified to read,15,16

D x; kð Þ � x� kvð Þ2 � x2
q

h i
x2 � x2

m


 �
� x4

m� ¼ 0: (8b)

In Eq. (8b), x2
q is the square of plasma frequency that includes

the plasma reduction factor, and it represents the space charge

effect, QC, in Pierce theory of the traveling wave tube.3,15,16

The Green’s function to the dispersion relation of the form

[Eq. (8b)] was studied in great detail in Ref. 14. which always

shows transient growth at a fractional power of time. This tran-

sient growth could be different from t1/3, depending on the

magnitude of x2
q, �, and z.14 Thus, including the space charge

effects of a TWT, very close to the band edge, the Green’s

function still exponentiates transiently at some fractional

power of time, before the asymptotic behavior (at fixed z) pre-

dicted by the Briggs-Bers criterion appears.

In summary, when the beam mode intersects with the for-

ward circuit mode of a slow wave structure, an absolute insta-

bility exists at both the lower and upper band edges, if the

beam current is sufficiently high. The upper band edge is more

susceptible to absolute instability than the lower band edge.

The threshold condition for the onset of absolute instability at

both band edges is given. Close to a band edge, there is always

transient growth in the Green’s function, at a fractional power

of time, whether or not there is an absolute instability.
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APPENDIX: THRESHOLDS OF ABSOLUTE
INSTABILITY AT LOWER AND UPPER BAND EDGES

In this Appendix, we outline the derivation of the analyt-

ical expressions, Eqs. (4) and (5), the threshold condition for

the onset of absolute instability at the lower and upper band

edges, respectively.

First, we argue the following points which apply to both

the lower and upper band edges. Refer to Eq. (3).

A.1 At marginal stability, Im ysð Þ ¼ 0.

A.2 There are four pairs of solutions to ðxs; ysÞ to (3) which

are candidates for absolute instability.

A.3 If a pair of solutions ðxs; ysÞ is complex, then xs ; ysð Þ is

also a pair of solutions, where the bar denotes the com-

plex conjugate.

A.1. This is argued since as mentioned in Sec. II, the

normalized growth rate is ImðysÞ and the growth rate at mar-

ginal stability is zero.

A.2. To obtain xs; ysð Þ; we solve the system of Eq. (3),

which becomes

y� uxþ 1� uð Þ2 y2 þ 2dy� q2x2
� �

� � ¼ 0 ; (A1)

2 y� uxþ 1� uð Þ u y2 þ 2dy� q2x2
� ��

�q2x y� uxþ 1� uð Þ
�
¼ 0 : (A2)

This system can then be manipulated into an eighth order

polynomial of x(yÞ, eliminating y(x) which has to be equal 0.

Therefore, there are eight pairs of solutions ðxs; ysÞ to this

system. However, there are two branches to the circuit mode

hyperbola, y2 þ 2dy� q2x2 ¼ 0. Each branch is responsible

for four of the eight solutions. One of the branches is a math-

ematical artifact of our approximation, and therefore, only

four pairs of solutions are candidates for absolute instability.

A.3. Here and in any other case, the statement “ðxs; ysÞ
is complex” means “xs has a nonzero imaginary part or ys

has a nonzero imaginary part.” The left hand side of (A1)

and (A2) can be rewritten as

p x; yð Þ ¼
X

i

X
j

ai;jx
iyj ; (A3)

with ai;j being the real coefficients. It is easy to show that

p x; yð Þ ¼ pðx; yÞ. Therefore, if xs; ysð Þ is a solution to both

(A1) and (A2), then xs ; ysð Þ will be a solution also.

We next treat the lower band edge in Sec. 1 and the

upper band edge in Sec. 2.

1. Lower band edge

In this section, we will derive the condition for marginal

stability for the lower band edge. First, we argue that of the

four pairs of solutions that are candidates for absolute insta-

bility, two will always be real and two will always be com-

plex. To do so, we use Fig. 6. The upper branch of the

hyperbola is the branch that yields solutions that are candi-

dates for absolute instability. The dashed lines represent the

solution to D x; yð Þ ¼ 0, and the crosses are the solutions to

@D=@x ¼ 0 or dy=dx ¼ 0. As � increases, the dashed lines

will move away from both the circuit mode and the beam

mode. The slope on each dashed line will always be 0 at

exactly one point regardless of �. Therefore, there are exactly

two real pairs of solutions which, being real, cannot be can-

didates for absolute instability, and the two remaining pairs

of solutions have to be complex, and they are candidates for

absolute instability when � is sufficiently large. We believe
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that Ref. 6 did not check the complex roots for absolute

instability for the lower band edge because the existence of

real roots is a sufficient condition for stability at the upper

band edge (see Sec. 2 of the Appendix). This results in the

erroneous claim in Ref. 6 that the lower band edge does not

suffer from absolute instability when the beam mode inter-

sects the circuit mode at the forward wave side.

Numerically evaluating the Briggs-Bers criterion for the

complex roots does yield absolute instability for sufficiently

high values of �. At marginal stability, xs; ysð Þ must be com-

plex and ys must be real as argued in A.1. Therefore, xs must

have an imaginary part. Furthermore, xs ; ysð Þ must also be a

solution to (3) as argued in A.3. Since (3) guarantees that xs

and xs are double roots to D x; yð Þjys
¼ 0, then

D x; yð Þjys
¼ a x� xsð Þ2 x� xsð Þ2

¼ a x� 2Re xsð Þxþ xsj j2
� �2

; (A4)

for some real a. Using (2) to evaluate D x; yð Þjys
and setting

each coefficient of the fourth order polynomials of x in Eq.

(A4) equal to each other, we obtain a system of five equa-

tions with five unknowns (�, ReðxsÞ, xsj j2, ys, and a). Solving

this system yields Eq. (4) of the main text.

2. Upper band edge

In this section, we will derive the condition for marginal

stability for the upper band edge. First, we argue that out of

the four pairs of solutions that are candidates for absolute

instability, two will always be complex and two will transi-

tion from real to complex as � increases. Figure 7 shows the

dispersion relation (2) for a high value of � at which absolute

instability exists. Figure 8 shows the dispersion relation (2)

for a low value of � at which absolute instability does not

exist. In Fig. 7, the bottom branch of the hyperbola is the one

that yields solutions that are candidates for absolute instabil-

ity at the upper band edge. Figure 8 is zoomed in around the

intersection point of the beam mode and the circuit mode for

a very low value of �, at which there is no absolute

instability. Note that this intersection point is to the left of

the peak of the circuit mode. For sufficiently high values of

�, there are no real solutions to (3) as seen in Fig. 7. As �
decreases, both dashed lines in Fig. 7 will move closer to the

beam and circuit modes. For sufficiently small values of �,
the blue dashed line will fold over the peak of the circuit

mode and have a zero derivative (dy/dx¼ 0) at two points as

seen in Fig. 8. Therefore, there are two solutions that are

always complex with nonzero imaginary parts and two solu-

tions that transition from real to imaginary as � increases.

Numerically evaluating the Briggs-Bers criterion for the

two roots that are always complex, in both Figs. 7 and 8,

never yields absolute instability. Numerically evaluating the

Briggs-Bers criterion for the two roots that transition from

real to complex as � increases always yields absolute insta-

bility when they are complex. Marginal stability is therefore

the point when these two pairs of solutions transition from

real to complex. When these solutions are complex, they

must have the same real parts as argued in A.3. Therefore, to

become real, these two pairs of solutions must coincide on

the real axis. For each pair of solutions D x; yð Þjys
must have

FIG. 6. Graphical representation of solutions to (2) for the lower band edge

for � ¼ 10�3.

FIG. 7. A graphical representation of solutions to (2) for the upper band

edge for � ¼ 10�3 where no real solutions exist around the intersection

point.

FIG. 8. A graphical representation of solution to (2) for the upper band edge

for � ¼ 10�9 where two real solutions exist around the intersection point.
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a double x root. However, since these two pairs are the

same, D x; yð Þjys
must have two double x roots. This means

that D x; yð Þjys
has a triple root in x and therefore can be writ-

ten as

D x; yð Þjys
¼ a x� xsð Þ3 x� bð Þ ; (A5)

for some real a and b.

This triple root in x at transition to absolute instability

may also be seen in Fig. 8, where the two double roots on the

blue curve must merge to become a triple root before they

disappear as � increases. This appearance of a triple root in x
(or in k) is also the threshold condition for the onset of the

absolute instability in a gyrotron traveling wave amplifier,18

because the latter’s dispersion relation is very similar to that

of TWT near the upper band edge, as noted in Ref. 6.

Using (2) to evaluate D x; yð Þjys
and setting each coeffi-

cient of the fourth order polynomials of x in Eq. (A5) equal

to each other, we obtain a system of five equations with five

unknowns (�, xs, ys, a; and b). Solving this system yields Eq.

(5) of the main text.
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