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This paper presents an analytical model which calculates the current rectification of an asymmetric

two-dimensional ballistic constriction structure in a classical treatment. Such a ballistic diode

eliminates the use of p-n junctions or electrodes of dissimilar materials. We show the conditions at

which the I-V asymmetry may be maximized for various aspect ratios. The analytic theory is verified

by Monte Carlo simulations. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4878975]

I. INTRODUCTION

A diode is a two-terminal electronic component with an

asymmetric charge transfer characteristic, with low resistance

to current flow in one direction, and high resistance in the op-

posite direction. This unidirectional behavior offers the funda-

mental function of signal rectification. A diode is typically

implemented by p-n junctions with semiconductors of differ-

ent doping. Rectification can also be achieved by Schottky

contacts between metal and semiconductor. In the miniaturi-

zation of these diodes, it usually requires multiple metallic

electrodes of dissimilar materials,1–6 which bring many chal-

lenges to the nanolithography technology. Parasitic effects,

such as undesired doping and contact resistance, may also be

introduced to the junction by the metallic electrodes.7–10

It is thus important to seek different mechanisms to give

signal rectification. Current rectification based on geometric

effects has recently attracted considerable attentions.6,11–17

Geometrically induced rectification in two-dimensional (2D)

ballistic nano-devices is studied quantum mechanically by

using Shrodinger and Dirac equations.11 The asymmetric I-V
behaviors of a graphene based geometric diode have also

been demonstrated by Monte Carlo simulations using the

Drude model,15 as well as by experiments.14,15 However,

there is still a lack of analytic scaling to systematically guide

and optimize the geometric design of such devices.

In this paper, we analytically study the current rectifica-

tion of a 2D asymmetric ballistic constriction (Fig. 1).

Following Sharvin18 and Wexler,19 we study the ballistic

charge transport by using the analogy to dilute gas kinetics

(where the mean free path of particles � the size of hole on

the container wall).20 We found that there is an optimal con-

dition at which the I-V asymmetry is maximized. Our calcu-

lations are verified by Monte Carlo simulations (Figs. 3–5),

including the effects of a general drift velocity.

II. THE MODEL

Consider a 2D funnel-shaped constriction region between

two bulk conductors, as shown in Fig. 1. It is assumed that the

charge motion inside the contact region is ballistic. This may

be realized if the dimensions of the constriction region, espe-

cially the smallest dimension a (Fig. 1), are close to or smaller

than the mean-free-path length of the charge carriers in the

material.15,18,20 The charges are assumed to be reflected spec-

ularly at the edges of the device.14,15 The charge carriers

inside the circuit may have a general 2D velocity distribution

vtðhÞ, where h is the angle of the velocity and vt is the magni-

tude of the velocity at angle h (Fig. 1). The current entering

AB can be expressed as IAB ¼ qN < v? > �2d, where q
(assumed >0 throughout this paper for simplicity) is the

charge of a single carrier, N is the number density of the

charge carriers, d is the half-width of AB, and

<v? >¼

ðp=2

�p=2

vtðhÞ cos h dh

ðp
�p

dh

¼ 1

2p

ðp=2

�p=2

vtðhÞ cos h dh; (1)

which is the average velocity of the charges entering AB

from the left. The probability f1 that the charge carriers at

AB can be transported to exit CD is

f1 ¼
XM

m¼0

Fm; (2a)

FIG. 1. 2D funnel-shaped ballistic diode. Current entering the interface AB

(CD) is IAB (ICD), the probability for charge carriers at AB(CD) that can be

transported to CD(AB) is f1 (f2), so that the current transported from

AB(CD) to CD(AB) is I1 ¼ IAB � f1 (I2 ¼ ICD � f2).a)Electronic mail: umpeng@umich.edu

0021-8979/2014/115(20)/204908/5/$30.00 VC 2014 AIP Publishing LLC115, 204908-1

JOURNAL OF APPLIED PHYSICS 115, 204908 (2014)

http://dx.doi.org/10.1063/1.4878975
http://dx.doi.org/10.1063/1.4878975
mailto:umpeng@umich.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4878975&domain=pdf&date_stamp=2014-05-27


Fm ¼
2

ðymax
m

ymin
m

ðhmax
m ðyÞ

hmin
m ðyÞ

vtðhÞdh dy

ðd

�d

ðp=2

�p=2

vtðhÞdh dy

¼

ðymax
m

ymin
m

ðhmaxðyÞ

hminðyÞ
vtðhÞdh dy

d

ðp=2

�p=2

vtðhÞdh

;

(2b)

where Fm is the probability of charge carriers exiting CD

from AB after experiencing m reflections with the edges AD

and/or BC, and M is the maximum possible reflections that a

charge carrier may experience before exiting CD. In

Eq. (2b), yminðmaxÞ
m is the lowest (highest) location of charge

carriers on AB that are able to exit CD after m reflections

with the two side edges AD and/or BC, and hminðmaxÞ
m ðyÞ is

the minimum (maximum) angle of the velocity for a charge

carrier located at P0(�h, y) that is able to exit CD after m
reflections (Fig. 1).

The parameters yminðmaxÞ
m , hminðmaxÞ

m ðyÞ, and M may be

determined easily from the mirror image geometries of the

region ABCD, as shown in Fig. 2. Each trapezoid is the mir-

ror image of its neighbor with their shared side as the axis of

symmetry. Consider a charge carrier originated at point

P0(�h, y). Its transport to exit CD after m reflections is

equivalent to the direct transport to CD from its image point

Pm, with m¼ 0, 1, 2. Thus, any charge carriers on AB reflect-

ing once from AD to exit CD may be evaluated from the

direct transport of charge carriers from AB’s first mirror

image A1A2 to exit CD (note the overlap of point A and A1);

reflecting twice (BC then AD) to exit CD may be evaluated

from the direct transport from A2A3 to CD; etc. It is found

that

ymin
m ¼

�d; 0 � m < M or m ¼ M ðevenÞ;

d þ xAM
=jsin 2Maj; m ¼ M ðoddÞ;

(

ymax
m ¼

d; 0 � m < M or m ¼ M ðoddÞ;

�d � xAM
=jsin 2Maj; m ¼ M ðevenÞ;

( (3)

hminðmaxÞ
m ðyÞ ¼

tan�1 �y7a

h

� �
; m ¼ 0;

ð�1Þm mðp� 2aÞ þ tan�1
�jsin 2majcot 2ma d þ ð�1Þmy

� �
þ yAm

6ð�1Þma

xAm
þ jsin 2maj d þ ð�1Þmy

� �
 !

; 1 � m � M;

8>>>><
>>>>:

(4)

where the superscript “min(max)” corresponds to the top (bot-

tom) sign of the 6 and 7 signs, all the dimensions are defined

in Fig. 2, and ðxAm
; yAmÞ are the coordinates of the outer cor-

ners, Am, with ðxA1
;yA1
Þ¼ð�h;dÞ, and ðxAm

;yAm
Þ ¼ xAm�1ð

�2d sin½ðm� 1Þð2a� pÞ�; yAm�1
þ 2d cos½ðm� 1Þð2a� pÞ�Þ,

for m>1. The final m¼M is reached (i.e., maximum possible

reflections before exiting from CD) when xAM
< 0 and

xAMþ1 > 0. The factor of 2 in the first expression of Eq. (2b)

counts for the reflections from the mirror images in the nega-

tive half plane of the coordinates (not shown) in Fig. 2.

For a given constriction geometry of a, h, a (note

d ¼ aþ h=tan a), and a given velocity distribution of the

charge carriers vtðhÞ, the current that can be transported from

left to right (i.e., AB to CD) is I1 ¼ IAB � f1, where IAB and

f1 are obtained from Eqs. (1) and (2), respectively. Similarly,

the current I2 that can be transported from right to left (i.e.,

CD to AB) is

I2 ¼ ICD � f2 ¼ ICD ¼ �
qNa

p

ðp=2

�p=2

vtðhÞ cos h dh; (5)

since the probability of charge carriers originating from CD

to exit AB is f2 ¼ 1. In Eq. (5), the integration is carried out

for the angles with negative cos h only. The net current

would be Inet ¼ I1 � I2 (Fig. 1).

III. RESULTS AND DISCUSSION

Consider the zero external bias (V¼ 0) case first. Under

zero bias, the charge carriers inside the circuit are assumed

FIG. 2. Mirror images for the tapering region ABCD of Fig. 1. Charges at

point P0 may exit CD through processes: (1) direct transport, spanning angle

from hmin
0 to hmax

0 (blue); (2) reflecting once from AD, spanning angle from

hmin
1 to hmax

1 (red); or (3) reflecting twice from BC then AD, spanning angle

from hmin
2 to hmax

2 (green); etc. hmin
1 to hmax

1 in process (2) is obtained by consid-

ering the direct transport of charges from P0’s mirror image P1; hmin
2 to hmax

2 in

process (3) is obtained by the direct transport from the mirror image point P2.

Other possible processes (e.g., reflecting from AD then BC) are not shown.
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FIG. 3. Zero-bias case, charges with

isotropic initial velocity: (a) the proba-

bility of charge carriers transporting

from AB to CD, f zb
1 , and (b) the current

from AB to CD, Izb
1 ¼ Izb

AB � f zb
1 (nor-

malized to 2qNv0a=p), as a function of

a for various h/a. Dashed line in (b) is

for the current from CD to AB,

Izb
2 ¼ 2qNv0a=p. Symbols are for

Monte Carlo simulations.

FIG. 4. Drift-only case: (a) the proba-

bility of charge carriers transporting

from AB to CD, f d
1 , and (b), the current

from AB to CD, Id
1 ¼ Id

AB � f d
1 (nor-

malized to 2qNvda), as a function of a
for various h/a. Note that Id

netðV > 0Þ
¼ Id

1 � Id
2 ¼ Id

1 . Dashed line in (b) is

for the net current from CD to AB

when drift velocity pointing to the left,

i.e., Id
netðV < 0Þ ¼ 2qNvda. Symbols

are for Monte Carlo simulations.

FIG. 5. (a) The effective net current

Ig
ef f ective ¼ Ig

net � Izb
net (normalized to

2qNv0a=p) under various bias induced

g¼ vd=v0 ratios; (b) the I-V asymmetry,

g¼ Ig
ef f ectiveðV>0Þ=ð�I�g

ef f ectiveðV<0ÞÞ,
as a function of a.
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to move randomly with an isotropic distribution of initial ve-

locity, with a constant magnitude of vtðhÞ ¼ v0. We use

superscript “zb” to denote quantities for the zero bias case.

From Eq. (1), the current entering AB is

Izb
AB
¼ 2qN

v0

p
d: (6)

The probability of charge carriers transporting from AB to

CD in Eq. (2) is simplified to be

f zb
1 ¼

1

pd

XM

m¼0

ðymax
m

ymin
m

ðhmaxðyÞ

hminðyÞ
dh dy; (7)

which is plotted in Fig. 3(a) as a function of a for various h/a.

For a given h/a, f zb
1 increases as a increases. For a given a,

f zb
1 decreases as h/a increases. In the limit of a! 0,

f zb
1 ða ¼ 0Þ ¼ a=d ¼ 1=½1þ ðh=aÞ=tan a� ! 0. In the oppo-

site limit of a¼p/2, the region ABCD in Fig. 1 becomes rec-

tangular, which allows all the charge carriers entering AB to

transport to CD, resulting f zb
1 ða ¼ p=2Þ ¼ 1, since specular

reflections from AD and BC are assumed so that all the

charges entering AB are able to exit from CD. Monte Carlo

simulations are performed to verify the calculations.

Excellent agreement between the analytical results and

Monte Carlo simulations are obtained, as seen from Fig. 3(a).

From Eqs. (6) and (7), the current that can be trans-

ported from AB to CD is calculated as Izb
1 ¼ Izb

AB � f zb
1 , which

is plotted in Fig. 3(b). Similarly, from Eq. (5), we obtain the

current that can be transported from right to left (i.e., CD to

AB) as Izb
2 ¼ 2qNv0a=p, which is also plotted in Fig. 3(b).

There is a non-zero net current Izb
net ¼ Izb

1 � Izb
2 under zero

bias.21 However, it is surprising that the current flowing

from AB to CD is smaller than that of from CD to AB,

Izb
1 < Izb

2 , under zero external bias, with charge carriers hav-

ing isotropic velocity distribution. In this case, the tapering

edges of the constriction region result in more blockade of

current so that the preferable direction of charge flow is from

right to left, i.e., CD to AB. That is, the net current inside the

constriction region is from right to left. Note that in both

the limits of a ! 0 and a ! p/2, we have Izb
1 ! Izb

2 , where

the contact region has little influence on the charge transport.

It is clear from Fig. 3(b) that there is a maximum zero-bias

net current Izb
net ¼ Izb

1 � Izb
2 for a given h/a. The value of a at

which Izb
net is maximized increases with h/a.

On applying an external bias, an average drift velocity

vd will be induced to the charge carriers. The resulting veloc-

ity distribution would be the superposition of the initial iso-

tropic velocity v0ðhÞ and the bias-induced drift velocity

vdðh ¼ 0Þ, which is assumed to be proportional to the

applied bias V. Depending on the direction of bias, the mag-

nitude of the net current is expected to vary.

For simplicity, we first consider the ideal case where all

charge carriers have only a single drift velocity vd (h¼ 0).

We use superscript “d” to denote quantities for this “drift-

only” case. When the bias V> 0 (the potential in the left is

higher than in the right in Fig. 1), we have vd> 0, i.e., point-

ing to the right, assuming positive carrier charge (q> 0). The

current transport from AB to CD is Id
1 ¼ Id

AB � f d
1 , where

Id
AB ¼ 2qNvdd and f d

1 is the probability of charges entering

AB to be able to exit CD, shown in Fig. 4(a). f d
1 is calculated

similarly by using the mirror image method (cf. Fig. 2).

Similar to the zero-bias case, f d
1 increases with a, for a given

h/a. f d
1 decreases as h/a increases, for a given a. However, f d

1

increases much more rapidly with a than f zb
1 in the zero-bias

case and saturates at 1 before a reaches p/2. The current

transport from AB to CD Id
1 is plotted in Fig. 4(b), showing

clearly a maximum current at certain a for a given h/a. The

value of a for the maximum current Id
1 increases as h/a

increases. Note that the current transport from CD to AB is

Id
2 ¼ 0; thus, the net current flowing from AB to CD is

Id
netðV > 0Þ ¼ Id

1 � Id
2 ¼ Id

1 . Also note the excellent agree-

ment between the results from the analytical calculation and

the Monte Carlo simulation. In contrast, when vd< 0, i.e.,

pointing to the left, the net current from CD to AB is

Id
netðV < 0Þ ¼ 2qNvda, which is independent of a. Therefore,

for the case with drift velocity only, significant asymmetric

I-V characteristics are realized, with carriers flowing prefera-

bly in the forward direction when the structure in Fig. 1 is

forward biased (V> 0).

In general, the velocity distribution of the charge car-

riers is a superposition of the initial isotropic velocity v0ðhÞ
(a circle with its center at the origin and radius of v0 in the

velocity space) and the bias-induced drift velocity vdðh ¼ 0Þ,
the circle in the velocity space would be shifted to the right

with its center at (vd, 0), we have

vtðhÞ ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 þ 2g cos h0

p
;

sin h ¼ sin h0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 þ 2g cos h0

p
; �p < h0 � p;

(8)

where h0 is the corresponding angle of h before the shifting,

and g¼ vd/v0 is the drift-to-isotropic velocity ratio. Note that

Eq. (8) gives vtðhÞ ¼ v0 when g¼ 0, as expected. We use

superscript “g” to denote quantities for the case with the gen-

eral velocity distribution, Eq. (8). Equation (8) is used to-

gether with Eqs. (1)–(5) to obtain the current components Ig
1

and Ig
2 in various g ratios. The net current would be

Ig
net ¼ Ig

1 � Ig
2. As shown earlier, there is a zero-bias current

Izb
net for vd¼ 0, or V¼ 0. Thus, it is meaningful to obtain the

effective current, Ig
ef f ective ¼ Ig

net � Izb
net, which is the change

of current due to the applied bias (velocity distribution of

Eq. (8)) from the zero-bias case (isotropic velocity distribu-

tion). Ig
ef f ective is plotted as a function of a for various g in

Fig. 5(a), for the special case of h/a¼ 5. It is found that

Ig
ef f ective increases as g increases. However, the a for the

maximum current is insensitive to the applied bias, for a

given value of h/a. The I-V asymmetry, measured by

g ¼ Ig
ef f ectiveðV > 0Þ=ð�I�g

ef f ectiveðV < 0ÞÞ, increases as jgj
(or V) increases, as shown in Fig. 5(b). Since the asymmetry

g is insensitive to the applied bias, the ideal case of drift

velocity only (Fig. 4) may be used to estimate the optimal

geometry to maximize the I-V asymmetry.

IV. CONCLUSION

In summary, we have studied the I-V asymmetry as a

function of tapered angles and dimensional ratios for a geo-

metrically induced diode based on ballistic transport. The
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conditions for maximum I-V asymmetry are determined,

which may be used to optimize the design of such a

junction-less diode. Such a device may be realized using

materials with long charge mean free path, such as gra-

phene.11,12,14,15,22 The study may also be considered an

extension of the basic symmetric Sharvin contact.18,19
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