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Effect of Nonuniform Emission on Miram Curves
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Abstract— Analysis of temperature-limited flow, space-charge-
limited flow, and the transition between them using a simple
planar diode with a thermionic cathode, in which the cathode
surface has spatially nonuniform emission properties, is pre-
sented. Our theoretical results, which are derived from a model
based on solutions to the Vlasov and Poisson equations, compare
well with the results of particle-in-cell simulations. We find that
the location and the shape of the knee in the anode current
versus temperature characteristic (Miram or “rollover” curve)
are significantly affected by non-uniformities in the space-charge
density in the A–K gap, but are relatively unaffected by the
electron motion parallel to the electrode surfaces. In particular,
emission from an actively emitting region is strongly affected
by the forces (or lack thereof) exerted by the space-charge
of the electrons emitted by their neighbors. Perhaps, most
remarkably, we find that the limiting current reaching the anode
is approximately given by the classical 1-D Child–Langmuir law,
even if a significant fraction of the cathode surface is non-
emitting.

Index Terms— Cathode, Miram curve, space-charge-limited,
temperature-limited, thermionic emission, work function.

I. INTRODUCTION

THERMIONIC cathodes are widely used as electron
sources in electron guns and other devices. As the

cathode temperature T is increased, the current reaching the
anode transitions from a “temperature-limited” flow, in which
all electrons emitted by the cathode reach the anode, to a
“space-charge-limited” flow, in which only a small fraction
of the emitted electrons make it to the anode, the remain-
der being returned to the cathode surface. In a simple 1-D
model, the temperature-limited current density is given by
the Richardson–Dushman (RD) law [1], [2] and the space-
charge-limited current density is given by the Child–Langmuir
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(CL) law [3], [4]. It should be noted that the RD and CL
formulas have very different parametric dependencies. In par-
ticular, the RD current density depends only on T and φ,
the effective average work function of the cathode material,
and is independent of the diode geometry and the operating
voltage. The CL current density, in distinct contrast, depends
only on the diode geometry (A–K gap width) and the operating
voltage, and is independent of both T and φ, or any other
property of the cathode.

The anode current versus the cathode temperature charac-
teristic of a diode is commonly known as the Miram [5] or
“rollover” curve, and the transition from temperature-limited
to a space-charge-limited flow is referred to as the “knee” in
the curve. As we will show, the transition from a temperature-
limited flow to a space-charge-limited flow is very abrupt in a
1-D model, that is, the knee is very sharp. In measurements,
however, the transition is generally found to be significantly
more gradual than in 1-D theory. We show below that a
simple weighted superposition of Miram curves generated by
a 1-D model does not predict a smooth knee (as implied, for
example, by Gilmour [6, Fig. 5–28]), for the case in which
the cathode work function is spatially nonuniform. In fact,
it predicts a series of discrete sharp knees, occurring at various
temperatures.

The physical reasons behind the shape of Miram (and I–V )
curves have been a mystery for decades, despite the significant
efforts made to analyze them, both in experiments and in
modeling [5]–[14]. This is an important matter, because a
thermionic cathode is almost always operated in the vicinity
of the knee in TWTs and klystrons, due to considerations of
thermal stability and long-cathode life; gyrotrons, however, are
operated below the knee, in the temperature-limited regime.

It is therefore important to understand what processes
contribute to the location and the shape of the knee. The major
difficulty here is that many complicated factors affect the emis-
sion process, including the surface morphology of the cathode,
the size and orientations of the cathode grains, the spatial
distribution of the work function, local field enhancements due
to surface roughness, the velocity distribution of the emitted
electrons, and the role of local space-charge effects [5]–[16].
Virtually, none of these has been well characterized for any
real cathode. Even the definition of the effective surface area of
a cathode is not obvious when, as is often the case, a fraction
of the surface is poorly emitting or even non-emitting.

In this article, we isolate one important factor that con-
tributes to the location and the shape of the knee in the
Miram curve. Specifically, we show that when the cathode
work function is nonuniform, the resulting spatial variation of
the space-charge forces has a dramatic effect on the shape of
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the knee of the Miram curve. In order to illustrate this effect,
we formulate and solve a model for the anode current when
the cathode is composed of a periodic distribution of “stripes,”
each having a different value of work function. Our results
give some useful insights into the fundamental physics behind
Miram curves.

The effects of nonuniform cathode emission have been
studied by others [13]–[21], but none of these earlier works
explicitly considered the emission mechanism or the details
of the transition from temperature-limited to space-charge-
limited flow. The results of Umstattd and Luginsland [17],
in particular, enable us to interpret several unusual features
that we uncover here.

This article is organized as follows: Section II contains a
summary of theory that we use to construct Miram curves from
the basic equations of emission and electron flow. Section II-A
describes a 1-D model, based on the formulation of Fry [22]
and Langmuir [4], a useful summary of which may be found in
[23]. Section II-B contains our extension of the 1-D model to a
case in which the cathode is “tiled” by a periodic arrangement
of stripes, each with a different value of work function and/or
Richardson “A” coefficient. In this model, we limit the electron
motion to 1-D, in the direction normal to the cathode and the
anode, but solve Poisson’s equation for the potential in 2-D;
we refer to this description of the diode as a “1 1

2 -D” model.
We apply the 1-D and 1 1

2 -D models to the calculation of
Miram curves in Section III. The results of the 1-D model for
a cathode with a spatially uniform work function are shown
to be in near perfect agreement with those from particle-in-
cell simulation using the MICHELLE [24] code. However,
a formal application of the 1-D theory to a cathode with
spatially varying work function, which treats the configuration
as multiple parallel, non-interacting diodes, is shown to lead
to incorrect results. We then show that the results of the 1 1

2 -D
model agree very well with MICHELLE simulations for a case
in which the cathode is tiled by stripes with alternating values
of work function. Using this example, we illustrate how the
space-charge above one region affects the current reaching the
anode in a neighboring region. Section IV contains a summary
and conclusions, and recommendations for future work.

II. THEORY

We consider electron flow in the simple planar diode
illustrated in Fig. 1. Electrons are emitted from the cathode
located at z = 0 and are collected at the anode located at
z = d . We assign the potential of the cathode to be 0 and
that of the anode to be VA > 0. The emission properties
(work function and Richardson “A” coefficient) of the cathode
may depend on y, but the cathode temperature and cathode
and anode potentials will be assumed to be independent of y.
We neglect the Schottky effect [25], [6, p. 45] in our model,
but mention that this effect is included in the analysis of
Zhang et. al. [14]. Scott [26] has argued that the Schottky
effect may contribute to smoothing of the knee in the I–V
characteristic curve. However, the Schottky effect is very small
compared with the space-charge effects that we study here.

We will further assume that an infinite magnetic field is
applied in the z-direction. This assumption, which limits the

Fig. 1. Simple planar diode.

electron motion to the z-direction, is not as drastic as it may
seem. The results of [17] and our own tests have shown that
the Miram curves predicted by particle-in-cell simulations are
very nearly independent of the value of the axial magnetic
field, that is, nearly independent of the electron motion in the
y-direction.

The electron distribution function, considered as a function
of electron position (y, z) and velocity vz , will be assumed to
be given by

f (y, z;vz) = f0(y)e−E/kT = f0(y)e
−

�
1
2 mv2

z +qV (y,z)
�
/kT

(1)

where f0(y) is a normalization factor, E is the total energy of
an electron, m is the electron mass, q is the electron charge,
k is Boltzmann’s constant, T is the cathode temperature,
and V (y, z) is the electrostatic potential. Since y and E are
constants of motion, f is a solution of Vlasov’s equation.
We assume here that all electron velocities are non-relativistic.

We choose the value of the normalization factor f0(y) by
requiring that the emitted current density be the local RD
current density� ∞

0
dvzvz f (y, 0; vz) = JRD(y) = A(y)T 2e−φ(y)/kT (2)

where A(y) is the local value of the Richardson coefficient
and φ(y) is the local value of work function. Carrying out the
elementary integral in (2), we find that

f0(y) = 1

v2
th

JRD(y) (3)

wherein we have defined the thermal velocity vth ≡
(kT/m)1/2.

The potential V (y, z) satisfies Poisson’s equation�
∂2

∂y2 + ∂2

∂z2

�
V (y, z)

=
�π

2

�1/2 1

�0vth
JRD(y)e−qV (y,z)/kT

∗ er f c

�
vmin(y, z)

21/2vth

�
(4)

where �0 is the permittivity of free space and erfc is the
complimentary error function. We have obtained the charge
density at location (y, z) on the right-hand side of (4) by
integrating the distribution function (1) in velocity from the
minimum value of velocity vmin(y, z) of any electron that can
reach the location z to infinity. Expressions for vmin(y, z) in
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terms of local potential V (y, z) may be obtained by applying
energy conservation, as shown in Appendix A.

Application of the continuity equation yields the current
density at the anode as a function of y

JA(y) = JRD(y)e−qVm(y)/kT . (5)

It is worth noting that the local anode current density JA(y)
depends only on the depth Vm(y) of the potential minimum
and not on its location zm(y).

Of course, we do not know until we solve (4) whether
a potential minimum exists or not. It follows that (4) must
generally be solved iteratively in order to obtain a self-
consistent solution. However, in the special case that all
quantities are independent of y (1-D model), Fry [22] and
Langmuir [4] have shown how (4) may be solved and an
explicit condition obtained for the existence of a potential
minimum. We summarize the solution of this 1-D problem
below. However, first, we cast our basic equation (4) in a
dimensionless form�

∂2

∂ ȳ2 + ∂2

∂ z̄2

�
V̄ (ȳ, z̄) = 2 J̄ (y)eV̄ ( ȳ,z̄) ∗ er f c

�
v̄min(ȳ, z̄)

21/2

�
(6)

where we have defined the dimensionless quantities

ȳ ≡ y/d (7a)

z̄ ≡ z/d (7b)

V̄ (ȳ, z̄) ≡ −qV (y, z)/kT (7c)

J̄(ȳ) ≡ JRD(y)/J0 (7d)

v̄min(ȳ, z̄) ≡ vmin(y, z)/vth. (7e)

Here, in (7d), J0≡2(2/π)1/2�0v
3
th/((−q/m)d2) =

(9/2π1/2)JCLV̄ −3/2
A , where JCL = (4�0/9d2)

(−2q/m)1/2V 3/2
A is the classical CL current density.

A. 1-D Model

Following Fry and Langmuir, we assume that all quantities
are independent of y. Equation (6) may then be rewritten,
following some manipulation, as:�

dη

dθ

�2

= eηer f c(∓η1/2) − 1∓ 2

π1/2 η1/2 (8)

where the upper (lower) signs apply to the α- (β-) region,
defined as 0 ≤ z̄ ≤ z̄m (z̄m ≤ z̄ ≤ 1), and following Langmuir
[4], we have defined:

η ≡ V̄ − V̄m (9)

θ ≡ 2 J̄
1/2

eV̄m/2(z̄ − z̄m). (10)

Equation (8) is equivalent to Langmuir’s equation (11).
In the relatively uninteresting case, in which no α-region exists
(z̄m = 0; V̄m = 0), only the lower signs in (8) apply and the
anode current is purely temperature-limited, JA = JRD, that
is, all electrons emitted by the cathode reach the anode.

Fig. 2. Normalized value of the minimum potential V̄m (solid lines,
left vertical axis) and its normalized location z̄m (dashed lines, right axis)
versus the normalized current J̄ emitted by the cathode for various values of
normalized anode voltage V̄A. The values of V̄A are given in the legends.

Requiring the potential to be continuous at z̄ = z̄m leads to
the condition that determines the value of V̄m� (−V̄m)1/2

0

udu�
eu2er f c(−u) − 1− 2

π1/2 u
�1/2

+
� (V̄A−V̄m)1/2

0

udu�
eu2er f c(u) − 1+ 2

π1/2 u
�1/2 = [ J̄ eV̄m ]1/2

(11)

where we have defined the normalized voltage at the anode
V̄A ≡ −qVA/kT . The quantity on the right-hand side of (11)
is the square root of the anode current density. Once a root of
(11) is found for V̄m , the location of the potential minimum
is given by

z̄m = [ J̄ eV̄m ]−1/2
� (−V̄m)1/2

0

udu�
eu2er f c(−u) − 1− 2

π1/2 u
�1/2 .

(12)

The values of the normalized electric fields at the cathode and
anode surfaces are simply obtained from (8).

Fig. 2 is a plot of V̄m and z̄m versus J̄ for various values
of V̄A, obtained from (11) and (12). Fig. 3 is a plot of the
normalized anode current J̄ eV̄m versus V̄A, for various values
of J̄ . The curves in Fig. 3 are the normalized current–voltage
characteristics of a 1-D diode.

It follows from (11) that the condition for V̄m = 0, that
is, the threshold condition for the formation of a potential
minimum, is:

J̄thr =
⎡
⎢⎣� V̄ 1/2

A

0

udu�
eu2er f c (u) − 1+ 2

π1/2 u
�1/2

⎤
⎥⎦

2

. (13)

Fig. 4 is a plot of J̄thr versus V̄A. This curve represents
the boundary between temperature-limited and space-charge-
limited flows (location of the knee) in one dimension. It may
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Fig. 3. Normalized anode current J̄ eV̄m versus V̄A, for various values of J̄ .
The values of J̄ are given in the legend.

Fig. 4. Normalized threshold emitted current versus V̄A, from (13).

be shown from (13) that J̄thr ∼ (2π1/2/9)V̄ 3/2
A ≈ 0.394V̄ 3/2

A
for large values of V̄A. In terms of unnormalized quantities,
this threshold condition becomes Jthr ∼ JCL = JRD for large
anode voltages.

B. 1 1
2 -D Model

We return now to consider the solution of (4) and study a
particular case in which the cathode properties A(y) and φ(y)
are periodic functions of y with period p. A rapidly converging
iterative algorithm that we have used successfully to solve a
discretized version of (4) is summarized in Appendix B. There,
it is shown that the 2-D problem may be reduced to a set of
Ny -coupled 1-D problems, where 2N y is the number of cells
into which a period is divided. Once the potential as a function
of (y, z) has been obtained, the depth of the potential minimum
Vm(yi ) is known for each yi , where {yi , i = 0, Ny − 1} are
the cell centers. The average anode current density may then
be computed using

JA = 1

Ny

(Ny−1)�
i=0

JRD(yi )e
−qVm(yi )/kT . (14)

Fig. 5. Miram curve computed using the 1-D theory of Section II-A and by
the particle-in-cell simulation code MICHELLE, for a cathode with uniform
work function = 2.0 eV. Also shown are the classical CL current density and
the classical CL current density, including the finite temperature correction
factor of Langmuir.

It is this quantity that is plotted in Figs. 7, 10, and 12 in the
next section.

III. CALCULATION OF MIRAM CURVES

We now apply the 1-D and 1 1
2 -D models to the problem

of computing the Miram or rollover curves. These curves
of anode current versus temperature at a fixed voltage are
commonly measured and used to predict the cathode lifetime.
In the examples discussed below, we will use diode parameter
characteristic of those in a University of Wisconsin test
vehicle, VA = 179.5 V and d = 0.381 mm. We will take
the value of the Richardson “A” coefficient to be the classical
value of 1.201732 ×106 A/(m·◦K)2, independent of y for this
study.

Fig. 5 shows the Miram curve for a cathode with a spatially
uniform work function of 2.0 eV, as computed using the 1-D
model of Section II-A, and by the MICHELLE particle-in-
cell simulation code [24]. The work function value of 2.0 eV
was chosen as a representative of the typical work function
of a B-type thermionic dispenser cathode [27]. The agreement
between the 1-D model and the MICHELLE simulations is
close to perfect, even though no magnetic field was used in
the simulations, so the electrons were free to move laterally,
parallel to the electrode surfaces. This good agreement also
implies that the grid used in the MICHELLE simulations accu-
rately resolves the very small α-region between the cathode
and the potential minimum.

The space-charge-limited current in Fig. 5 is a slowly
increasing function of temperature, a feature that is attributable
to the increasing velocity of emission of electrons at the
cathode. The value of the classical CL current density, which is
derived for zero emission velocity and zero electric field at the
cathode, is ∼3.867 A/cm2 for the parameters of our problem.
This value and the values computed, including the finite
temperature correction factor (1 + 2.66/V̄ 1/2) first derived by
Langmuir [4] are also shown in Fig. 5.
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Fig. 6. Miram curves for a cathode with a work function area distribution
specified in Table I, as computed by 1-D theory using superposition, and by
3-D MICHELLE simulations. The inset is a cathode surface map of the work
function used in the MICHELLE simulations.

TABLE I

WORK FUNCTION AREA DISTRIBUTION

It might be imagined that in the case of a cathode with a
spatially nonuniform work function, the Miram curve may be
computed using a weighted superposition of the 1-D model
curves, each computed for a single work function; the relative
weight of each is chosen to be the area fraction occupied by
that work function on the cathode surface. This essentially
models the flow as that of independently operating, non-
interacting parallel diodes.

As an illustration, we apply this “superposition” approach to
the work function distribution given in Table I. This distrib-
ution of fractional cathode areas was derived from electron
backscatter diffraction measurements made on a tungsten
dispenser cathode [16], and the work function values were
obtained from density functional theory (DFT) calculations
[28]. We note, in particular, the presence of relatively large
non-emitting regions, which correspond to pores and other
imperfections in the cathode surface [16]. In Fig. 6, we see
that the Miram curve computed using the “1-D superpo-
sition” approach does not agree with the curve computed
by MICHELLE, except at very low temperatures where all
parts of the cathode operate as temperature-limited. The
MICHELLE simulations were fully 3-D. They used the work
function map shown in the inset in Fig. 6, from which Table I
was constructed.

We see in Fig. 6 that the space-charge-limited current
in the 1-D model is reduced by the fraction (22.46%) of
the non-emitting area of the cathode, but the space-charge-
limited current computed by MICHELLE is much larger—
evidence that emission from the active regions is “making
up” for the non-emitting ones. Our conclusion is that the

Fig. 7. Miram curves for a cathode with the work function distribution
consisting of equal width stripes of alternating work functions (2.0, 2.2) eV,
as computed by our 1 1

2 -D theory and by MICHELLE.

regions of different work functions do not emit independently.
Emission from one region is affected, via space-charge fields,
by emission (or its absence) from its neighbors.

It is notable that the knee in the MICHELLE curve in
Fig. 6 is quite smooth, even though the work function dis-
tribution (see Table I) is discrete, unlike the continuous work
function distribution assumed in [29]. (Compare the much less
smooth knees in the curves in Figs. 7, 10, and 12.) We believe
that the smooth transition in Fig. 6 from temperature-limited to
space-charge-limited flow may be due to the full 3-D treatment
of space-charge, including the lateral motion parallel to the
cathode surface, in the MICHELLE simulations.

In order to quantify the influence of emission of one region
on another, we apply our 1 1

2 -D model to a simple case in
which the work function is a periodic function of y of period
p, consisting of stripes of equal width p/2, with alternating,
unequal values of work functions φ1 and φ2.

Fig. 7 shows the Miram curves from our 1 1
2 -D model and

from MICHELLE for φ1 = 2.0 eV, φ2 = 2.2 eV, for stripe
widths p/2 = 53 and 265 μm. The excellent agreement leads
us to the conclusion that the interaction between the emitting
regions is due to the influence of the space-charge in one
region on the emission in other regions. This influence can
only be due to changes, caused by the neighboring space
charge, in the depth and the location of the local potential
minima (as functions of y), which strongly affect the amount
of emitted current that reaches the anode. We note that the
space-charge-limited current is the same for both stripe widths.

We may also conclude that the motion of electrons parallel
to the cathode and the anode, which is allowed in MICHELLE,
but not in the 1 1

2 -D model, is relatively unimportant; no
magnetic field is applied in MICHELLE simulations. It is
interesting that Adler and Longo [20] found that the motion
of electrons parallel to the cathode surface (space-charge
smoothing) contributes to the fact that the limiting current is
determined by the CL law, when the work function is nonuni-
form. Here, we find that even in the case where no motion
parallel to the electrode surfaces is allowed, the limiting
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Fig. 8. Contributions to the total anode current from regions of different work
functions, for the case of Fig. 7, for stripe width = 53 μm. J1 (blue) is the
current density at the anode opposite the low (2.0 eV) work function region on
the cathode; J2 (red) is the current density opposite the high (2.2 eV) work
function region, and J = (J1+ J2)/2 (black) is the average anode current
density. The MICHELLE simulations included an axial magnetic field of 1 T.

current is still determined by the CL law. The unimportance
of lateral motion was also noted in [17] and [21].

Finally, we note that the computational time required by
the 1 1

2 -D model code to compute the anode current at each
temperature was on the order of 0.3 s on a desktop PC,
while the corresponding MICHELLE simulations required a
few seconds to a few minutes, depending on the temperature
and on the total particle count and other numerical parameters.

It is interesting to examine the contributions to the total
anode current from the regions of different work functions as
a function of temperature. Fig. 8 illustrates the results from
the 1 1

2 -D model (dashed lines) and MICHELLE simulations1

(points) for p/2 = 53μm. We see the remarkable rollover
of the contribution from the lower work function region (J1),
as a function of temperature. We attribute this rollover to the
effect of the space-charge emitted by its neighbor, the higher
work function region, i.e., as the current produced by the
higher work function region increases with temperature, its
space-charge starts to affect the depth and the location of the
potential minimum in front of the cathode in the lower work
function region. This is a purely 2-D effect, completely absent
in the 1-D theory of Section II-A.

Fig. 8 may be qualitatively understood as follows. It was
shown in [18] and [21], by considering the 2-D space-charge
effects, that the anode current density due to emission from
a stripe of finite width w may exceed the classical 1-D CL
value by a factor of approximately (1 + (d/πw)), where d is
the anode–cathode spacing. At moderately low temperatures,
when J2 is much smaller than J1, the effective value of w is
just the width of a single stripe. However, as the temperature

1The MICHELLE simulations of Fig. 8 used an axial magnetic field Bz =
1T in order to confine the electron motion predominately to the ẑ-direction.
When a smaller magnetic field (or no magnetic field) is used, the J1 and J2
curves of Fig. 8 are shifted slightly up and down, respectively, but in such
a way that the J = (J1 + J2)/2 (Miram) curve is, to a remarkable degree,
unchanged, that is, we find that the Miram curve is very insensitive to the
value of Bz .

Fig. 9. Normalized electric field at the cathode surface as a function of y for
various temperatures, for the case of Fig. 7, for stripe width = 0.0530 mm.
The 2.0-eV work function region extends from y = 0 to 0.0265 mm; the
2.2-eV work function region extends from 0.0265 to 0.0530 mm. The values
in the legend specify the cathode temperature in ◦C.

is increased and J2 becomes significant, the effective value of
w increases, which reduces the factor by which the current
density may exceed the CL value. This implies that J1 must
eventually rollover as J2 increases, consistent with Fig. 8.
The average of J1 and J2, which we denote as J in Fig. 8,
monotonically approaches the CL value.

Fig. 9 is a plot of the normal electric field at the cathode
surface versus y for various temperatures. We see that as the
temperature is increased, the normal electric field is reversed
first over the low work function region and then over the
high work function region. A reversed electric field at the
cathode surface, of course, signifies the existence of a potential
minimum in front of the cathode.

Next, in order to more fully explore the insensitivity of
the limiting current to the presence of non-emitting regions,
we use our two stripe model with φ1 = 2.1 eV and φ2 =
10.0 eV, i.e., one stripe is emitting and the second stripe
is not, in the temperature range of interest. We fix the total
width p = 20 μm, but vary the relative width of the non-
emitting region from zero percent to 95 percent of the full
period. The resulting average anode current density is shown
in Fig. 10, which again shows excellent agreement between
the 1 1

2 -D model (solid curves) and MICHELLE simulations
(dashed curves) for all cases. It is striking that even with
40% of the cathode non-emitting (third curve from left in
Fig. 10), essentially the same Miram curve was obtained as
an 100%-emitting cathode (leftmost curve in Fig. 10), except
for a shift of about 40 ◦C for the onset of space-charge-
limited emission. The average anode current tends toward the
same value at high temperatures, regardless of the fraction
of the non-emitting area. This shows that at sufficiently high
temperatures, emission from the active regions is indeed mak-
ing up for the lack of emission from the inactive regions, as
our comparison of MICHELLE simulations with 1-D analysis
(see Fig. 6) suggested. Umstattd and Luginsland [17] first
discovered this remarkable 2-D effect; they did not, however,
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Fig. 10. Average anode current density versus T for alternating values of
work function (2.1 eV [emitting] and 10.0 eV [non-emitting]) for different
stripe widths, computed using our 1 1

2 -D model (Bz = ∞), solid curves, and
MICHELLE (Bz = 0), dashed curves. The legend specifies the percentage of
the total width that is non-emitting.

Fig. 11. Various orderings of eight stripes with different work functions;
the two end half-stripes are considered as one because of the periodicity
condition. Work function values in volts are shown in white. Stripe widths
are proportional to the measured area fractions. Total width = 1 period =
80 μm.

consider the detailed physical mechanism or the transition
from temperature-limited to space-charge-limited flow.

Finally, we consider a more complicated case, illustrated
in Fig. 11, in which the work function period contains eight
stripes. The values of the work functions are from experimen-
tally determined values listed in Table I. The width of each
stripe is taken to be proportional to its fractional occurrence
in the distribution. The average stripe width is taken to be
10 μm, which is a typical scale size for a tungsten surface
grain, so the full period p = 80 μm. An important feature of
data in Table I is the existence of a significant non-emitting
region (∼22% of the entire cathode in this case), to which
we again assign a work function value of 10 eV in our model
calculations.

We consider various “orderings” of the eight stripes within
a period, as illustrated in Fig. 11. Fig. 12 shows the resulting
Miram curves computed with the 1 1

2 -D model. We see that
the shape of the transition (“knee region”) from temperature-
limited to space-charge-limited flow depends on the ordering
of the stripes, but the saturated, space-charge-limited current
is the same for all orderings. Figs. 11 and 12 include a case
“Order 1r” in which the non-emitting regions in “Order 1”
are replaced by emitting regions with φ = 2 eV. As expected
from our earlier results, the space-charge-limited current is

Fig. 12. Miram curves computed using 1 1
2 -D theory, for various stripe

orderings illustrated in Fig. 11.

unchanged, even though non-emitting regions of the cathode
have been replaced by emitting ones. We conclude that the
space-charge-limited current is again accurately given by the
classical CL formula (including Langmuir’s finite temperature
correction; see Fig. 5).

IV. SUMMARY AND CONCLUSION

We have generalized the 1-D diode model of Fry and
Langmuir to include the effects of microscopic variations in
the cathode emission properties. We have assumed that the
electron motion is confined to one direction only, but have
allowed the space-charge fields to vary in two dimensions.
We have used the new model to compute Miram curves for
various distributions of work function on the cathode surface.
We have found that the shape of the Miram curve near the
knee is significantly affected by the work function distribution,
but the space-charge-limited current density is still accurately
given by the classical CL law in all cases examined, including
cases in which significant portions of the cathode are non-
emitting. We have found that the electron motion parallel to
the cathode surface has little effect on the shape of the Miram
curves.

While our numerical studies were restricted to a diode with
VA = 179.5 V, d = 0.381 mm, we expect that the general
features revealed would occur generally in diodes with other
voltages and gap widths because of the very wide ranges
of operating regimes that we have studied, viz., nonmagne-
tized and highly magnetized electron flow, low-fraction and
high-fraction active emitting regions, 1-D and 2-D analytic
theory and comparison with MICHELLE simulations, inter-
acting and non-interacting stripes and uniform, systematic,
and highly random work function distributions, both in 1-D
and 2-D.

Our study corroborates the general notion that the shape
of the Miram curve depends on the cathode material prop-
erties, which may change with age. We have now moved
a step further, demonstrating quantitatively how the effects
of nonuniform emission from the cathode surface strongly
affect the shape of the curves. We speculate that local electric
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field enhancements due to cathode surface roughness, which
was neglected in this article, will exert a similar influence
by contributing additional emission non-uniformities on an
otherwise flat cathode surface. If confirmed by further studies,
this observation could lead to substantial simplification of the
simulation of electron emission from rough surfaces.

It would be straightforward to include y-dependence of the
cathode temperature and potential and the Schottky effect [25]
in the numerical algorithm summarized in Appendix B.

Future work may include the generalization of the 1 1
2 -D

model to 2 1
2 -D, in which the cathode work function is tiled

in both the x- and y-directions, but with electron motion still
restricted to the z-direction. Such a model could be used to
generate predictions of Miram curves that may be directly
compared with experimental measurements. It may also shed
additional light on the origins of the smooth transition between
temperature-limited and space-charge-limited flows noted in
the 3-D simulation results shown in Fig. 6.

Finally, we note that the problem inverse to the one studied
here, that is, the determination of the work function distrib-
ution from the Miram (or I–V ) curves [5], [11], [13], [14],
[29] is much more difficult than computing the Miram curve
directly from a specified work function distribution, as is done
in this article. The work on the inverse problem appears to have
been limited to inferring properties (e.g., standard deviations)
of the spatially integrated work function distribution. The
results illustrated in Fig. 12 demonstrate that the shape of the
Miram curve in the transition region depends on the detailed
spatial distribution of the work function. We consequently
suggest that it may be possible to infer (some properties of)
the spatial distribution from the form of the Miram curves,
though this is highly speculative.

APPENDIX A
EXPRESSIONS FOR vmin

First, we consider the case in which the potential encoun-
tered by an electron as it moves away from the cathode toward
the anode is a monotonically increasing function of z, that is,
the minimum in the potential as a function of z is Vm(y) = 0,
which occurs at the cathode surface, z = 0. In this case,
vmin(y, z) is the velocity at z of a particle that was emitted
from the cathode with zero velocity, from which it follows
from the conservation of total (kinetic + potential) energy that

vmin;0(y, z) =
�−2qV (y, z)

m

�1/2

. (A1)

Next, we consider what happens when there is a potential
minimum Vm(y) < 0 occurring at z = zm > 0. In this
case, only electrons emitted from the cathode with velocity
greater than (2qVm(y)/m)1/2 will make it over the potential
hill and reach the anode, while the others will be returned to
the cathode. It follows that for 0 < z < zm (α–region)

vmin;α(y, z) = −
�−2q(V (y, z) − Vm(y))

m

�1/2

(A2)

and for zm < z < d (β–region)

vmin;β(y, z) = +
�−2q(V (y, z) − Vm(y))

m

�1/2

. (A3)

APPENDIX B
NUMERICAL ALGORITHM FOR THE SOLUTION OF (4)

We summarize an algorithm for the numerical solution of
(4), in the case V (y+ p, z) = V (y, z), for a specified period p,
and V (−y, z) = V (y, z); the latter condition applies to all of
the examples in the text.

We write (4) as

∇2V (y, z) = S[y;V ] (B1)

where we have defined the right-hand side of (4) as the
source term S, which is a nonlinear function of y and V .
Equation (B1) may be solved iteratively, as follows.

We define Ny , discrete, “cell centered” values of y as

yi ≡ i + 1/2

Ny
(p/2) (B2)

for i = 0, 1, . . . Ny −1 and express the potential at these points
as a Fourier series

Vi (z) = 2

Ny

(Ny−1)�
k=0

� Ṽk(z) cos

�
2πk

p
yi

�
(B3)

where the prime mark on the sum means that the k = 0 term
has an additional factor of 1/2. If we discretize the second
derivative with respect to y in (B1), we find that Ṽk(z) satisfies

d2

dz2 Ṽk − 2

(
y)2 (1 − cos θk)Ṽk = S̃k (B4)

for k = 0, 1, . . . Ny − 1, where θk ≡ πk/Ny , 
y ≡ p/(2Ny)

is the cell size in y, and S̃k is the discrete Fourier transform
of S given by

S̃k =
(Ny−1)�

i=0

Si cos

�
2πk

p
yi

�
. (B5)

We require the boundary conditions2 on Ṽk(z) to be

Ṽk(0) = 0; k = 0, 1, . . .Ny − 1 (B6a)

Ṽk(d) =
�

Ny VA; k = 0

0; k> 0.
(B6b)

Suppose that now we have an approximate solution on the
discrete y-grid for the potential, which we denote as V (n)

i (z),
where the superscript (n) denotes the nth approximation
in our iterative solution. The next approximation is
obtained as follows:

1) Evaluate S[y; V (n)]. This step requires that we examine
V (n)

i (z) as a function of z for each i and determine
the location of the potential minimum, if one exists.
Referring to (4) in the text, we observe from (A2) and
(A3) that the form of S[y; V (n)] is different on either
side of the potential minimum.

2) Compute the Fourier coefficients of S[y; V (n)(y, z)]
using (B5). This may be done very quickly using a fast
Fourier transform when Ny is an integer power of 2.

3) Solve the set of equations (B4), subject to the boundary
conditions (B6a) and (B6b). This may be done, for

2A different boundary condition could be applied at z = 0 to account for
the differences in potential of cathode regions with different work functions.
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example, by the widely used Thomas algorithm [30],
[31] for tri-diagonal systems on a grid in z.

4) Construct a new potential, which we denote as V (n+)
i ,

using (B3).
5) The (n + 1) approximation to the potential is then

V (n+1)
i = αV (n)

i + (1 − α)V (n+)
i (B7)

where the mixing parameter α is a real number satisfying
0 < α < 1. The choice of α must be made empirically,
in order to obtain convergence. Near the knee in the
Miram curve, for example, we have found that α � 0.8
may be required.

The iteration must be started with an initial guess for
V (y, z). A reasonable choice is the vacuum solution VA(z/d),
though other choices can lead to faster convergence.

Using this algorithm, we have found that on the order of
10–100 iterations using α = 0.9 are typically required in order
to obtain convergence of the potential everywhere to one part
in 104.

REFERENCES

[1] O. W. Richardson, The Emission of Electricity from Hot Bodies. London,
U.K.: Longmans, Green, and Company, 1916.

[2] S. Dushman, “Electron emission from metals as a function of temper-
ature,” Phys. Rev., vol. 21, no. 6, pp. 623–636, 1923, doi: 10.1103/
PhysRev.21.623.

[3] C. Child, “Discharge from hot CaO,” Phys. Rev. (Ser. I), vol. 32, p. 492,
May 1911, doi: 10.1103/PhysRevSeriesI.32.492.

[4] I. Langmuir, “The effect of space charge and initial velocities on the
potential distribution and thermionic current between parallel plates,”
Phys. Rev., vol. 21, no. 4, p. 419, Apr. 1923, doi: 10.1103/Phys-
Rev.21.419.

[5] M. J. Cattelino, G. V. Miram, and W. R. Ayers, “A diagnostic technique
for evaluation of cathode emission performance and defects in vehicle
assembly,” in IEDM Tech. Dig., San Francisco, CA, USA, Dec. 1982,
pp. 36–39, doi: 10.1109/IEDM.1982.190205.

[6] A. S. Gilmour, Jr., Klystrons, Traveling Wave Tubes, Magnetrons,
Crossed-Field Amplifiers, and Gyrotrons. Boston, MA, USA: Artech
House, 2011.

[7] K. Jensen, Introduction to the Physics of Electron Emission. Hoboken,
NJ, USA: Wiley, 2017.

[8] R. T. Longo, “A study of thermionic emitters in the regime of practical
operation,” in IEDM Tech. Dig., Washington, DC, USA, Dec. 1980,
pp. 467–470, doi: 10.1109/IEDM.1980.189868.

[9] R. Vaughan, “A synthesis of the Longo and Eng cathode emission mod-
els,” IEEE Trans. Electron Devices, vol. ED-33, no. 11, pp. 1925–1927,
Nov. 1986, doi: 10.1109/T-ED.1986.22844.

[10] T. J. Grant, “Emission degradation characteristics of coated dispenser
cathodes,” in IEDM Tech. Dig., Los Angeles, CA, USA, Dec. 1986,
pp. 700–703, doi: 10.1109/IEDM.1986.191289.

[11] M. Cattelino and G. Miram, “Predicting cathode life expectancy and
emissino quality from PWFD measurements,” Appl. Surf. Sci., vol. 111,
pp. 90–95, Feb. 1997, doi: 10.1016/S0169-4332(96)00718-0.

[12] G. Miram, L. Ives, M. Read, R. Wilcox, M. Cattelino, and B. Stockwell,
“Emission spread in thermionic cathodes,” in Proc. 5th IEEE IVEC,
Apr. 2004, pp. 303–304, doi: 10.1109/IVELEC.2004.1316330.

[13] S. P. Khodnevich, “Determination of emission homogeneity on the
cathode by current-voltage characteristic,” Electron. Technol., Microw.
Electron., vol. 20, no. 4, pp. 118–130, 1969.

[14] J. Zhang, S. Illy, I. Gr. Pagonakis, T. Rzesnicki, A. Avramidis,
A. Malygin, S. Ruess, A. Samartsev, G. Dammertz, B. Piosczyk,
G. Gantenbein, M. Thumm and J. Jelonnek, “Evaluation and influ-
ence of gyrotron cathode emission inhomogeneity,” IEEE Trans.
Electron Devices, vol. 64, no. 3, pp. 1307–1314, Mar. 2017, doi:
10.1109/TED.2017.2655147.

[15] P. Zhang, A. Valfells, L. K. Ang, J. W. Luginsland, and Y. Y. Lau, “100
years of the physics of diodes,” Appl. Phys. Rev., vol. 4, Mar. 2017,
Art. no. 011304, doi: 10.1063/1.4978231.

[16] D. Chen, R. Jacobs, V. Vlahos, D. Morgan, and J. Booske, “Sta-
tistical model of non-uniform emission/rom polycrystalline tungsten
cathodes,” in Proc. Int. Vac. Electron. Conf. (IVEC), Busan, South Korea,
May 2019, pp. 1–2, doi: 10.1109/IVEC.2019.8745051.

[17] R. Umstattd and J. Luginsland, “Two dimensional space charge lim-
ited emission: Beam edge characteristics and applications,” Phys.
Rev. Lett., vol. 87, Mar. 2001, Art. no. 145002, doi: 10.1103/
PhysRevLett.87.145002.

[18] Y. Y. Lau, “Simple theory for the two-dimensional Child-Langmuir
law,” Phys. Rev. Lett., vol. 87, no. 27, 2001, Art. no. 278301, doi: 10.
1103/PhysRevLett.87.278301.

[19] J. W. Luginsland, Y. Y. Lau, R. J. Umstattd, and J. J. Watrous, “Beyond
the Child-Langmuir law: A review of recent results on multidimensional
space-charge-limited flow,” Phys. Plasmas, vol. 9, no. 5, p. 2371,
Apr. 2002, doi: 10.1063/1.1459453.

[20] E. A. Adler and R. T. Longo, “Effect of nonuniform work func-
tion on space-charge-limited current,” J. Appl. Phys., vol. 59, no. 4,
pp. 1022–1027, 1986, doi: 10.1063/1.336535.

[21] J. W. Luginsland, Y. Y. Lau, and R. M. Gilgenbach, “Two-dimensional
Child-Langmuir law,” Phys. Rev. Lett., vol. 77, no. 22, pp. 4668–4670,
1996, doi: 10.1103/PhysRevLett.77.4668.

[22] T. Fry, “The thermionic current between parallel plane electrodes;
velocities of emission distributed according to Maxwell’s law,” Phys.
Rev., vol. 17, no. 4, p. 441, Apr. 1921, doi: 10.1103/PhysRev.17.441.

[23] C. Quate, “Shot noise from thermionic cathodes,” in Noise in Electron
Devices, L. D. Smullin and H. A. Haus, Eds. Cambridge, MA, USA:
MIT Press, 1959, pp. 1–44.

[24] J. Petillo, E. M. Nelson, J. F. DeFord, N. J. Dionne, and B. Levush,
“Recent advances in the MICHELLE 2D/3D electron gun and col-
lector modeling code,” IEEE Trans. Electron Devices, vol. 52, no. 5,
pp. 742–748, May 2005, doi: 10.1109/TED.2005.845800.

[25] W. Schottky, “Über den Einfluss von Strukturwirkungen, besonders der
Thomsonschen Bildkraft, auf die Elektronenemission der Metalle (On
the influence of structural effects, especially Thomson’s image force, on
the electron emission of metals),” Physik Zeitschr., vol. 15, pp. 872–878,
1914.

[26] J. B. Scott, “Extension of Langmuir space-charge theory into the
accelerating field range,” J. Appl. Phys., vol. 52, no. 7, pp. 4406–4410,
Jul. 1981, doi: 10.1063/1.329367.

[27] R. Forman, “A proposed physical model for the impregnated tungsten
cathode based on Auger surface studies of the Ba-O-W system,” Appl.
Surf. Sci., vol. 2, no. 2, p. 258, 1979.

[28] R. Jacobs, J. Booske, and D. Morgan, “Work function and surface
stability of tungsten-based thermionic electron emission cathodes,”
Appl. Mater., vol. 5, no. 11, Nov. 2017, Art. no. 116105, doi:
10.1063/1.5006029.

[29] J. C. Tonnerre, D. Brion, P. Palluel, and A. M. Shroff, “Evaluation of the
work function distribution of impregnated cathodes,” Appl. Surf. Sci.,
vol. 16, nos. 1–2, pp. 238–249, 1983 (http://dx.doi.org/10.1016/0378-
5963(83)90070-3).

[30] L. H. Thomas, Elliptic Problems in Linear Difference Equations Over
a Network. New York, NY, USA: Columbia Univ., 1949.

[31] S. D. Conte and C. de Boor, Elementary Numerical Analysis. Philadel-
phia, PA, USA: SIAM, 2018, pp. 153–156.

David Chernin received the Ph.D. degree in applied
mathematics from Harvard University, Cambridge,
MA, USA, in 1976.

He is currently a Senior Staff Scientist with Leidos
Inc., Reston, VA, USA. Since 1984, he has been
with Leidos Inc., and its predecessor company SAIC,
where he has conducted research on beam-wave
interactions and other topics in the physics of parti-
cle accelerators and vacuum electron devices.

http://dx.doi.org/10.1103/PhysRevSeriesI.32.492
http://dx.doi.org/10.1109/IEDM.1982.190205
http://dx.doi.org/10.1109/IEDM.1980.189868
http://dx.doi.org/10.1109/T-ED.1986.22844
http://dx.doi.org/10.1109/IEDM.1986.191289
http://dx.doi.org/10.1016/S0169-4332(96)00718-0
http://dx.doi.org/10.1109/IVELEC.2004.1316330
http://dx.doi.org/10.1109/TED.2017.2655147
http://dx.doi.org/10.1063/1.4978231
http://dx.doi.org/10.1109/IVEC.2019.8745051
http://dx.doi.org/10.1063/1.1459453
http://dx.doi.org/10.1063/1.336535
http://dx.doi.org/10.1103/PhysRevLett.77.4668
http://dx.doi.org/10.1103/PhysRev.17.441
http://dx.doi.org/10.1109/TED.2005.845800
http://dx.doi.org/10.1063/1.329367
http://dx.doi.org/10.1063/1.5006029
http://dx.doi.org/10.1103/PhysRev.21.623
http://dx.doi.org/10.1103/PhysRev.21.623
http://dx.doi.org/10.1103/PhysRevLett.87.145002
http://dx.doi.org/10.1103/PhysRevLett.87.145002
http://dx.doi.org/10.1103/PhysRevLett.87.278301
http://dx.doi.org/10.1103/PhysRevLett.87.278301


CHERNIN et al.: EFFECT OF NONUNIFORM EMISSION ON MIRAM CURVES 155

Y. Y. Lau (M’98–SM’06–F’07) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering
from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 1968, 1970, and 1973,
respectively.

He is currently a Professor with the University
of Michigan, Ann Arbor, MI, USA, where he is
specialized in RF sources, heating, and discharge.

Dr. Lau was elected Fellow of the American
Physical Society (APS) in 1986. He received the
1999 IEEE Plasma Science and Applications Award

and the 2017 IEEE John R. Pierce Award for Excellence in Vacuum Elec-
tronics. He served three terms as an Associate Editor for Physics of Plasmas
from 1994 to 2002.

John J. Petillo (M’99–SM’12) received the B.S.
degree in electrical engineering from Northeastern
University, Boston, MA, USA, in 1980, and the
Ph.D. degree in applied plasma physics from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 1986. His dissertation was on equilib-
rium and stability analysis of the modified betatron
accelerator.

He has been with Leidos Inc., Reston, VA, USA,
formerly (Science Applications International Corpo-
ration/SAIC), since 1986, first in McLean, VA, USA,

and currently in Billerica, MA, USA. Since joining Leidos/SAIC, he has
been involved in the research and development of analysis software and
analysis and advanced modeling and simulation of RF components, including
vacuum electronics, emission physics, accelerator components, microwave
devices, ion beam lithography, and ion thrusters. He has been a Lecturer
with the U.S. Particle Accelerator School on several occasions in the area
of beam and EM-PIC field modeling. He is currently the Director of the
Center for Electromagnetic Science, Leidos Innovation Center (LInC), Leidos
Inc., and also the Research and Development Manager and an author of the
MICHELLE, MASK, AVGUN, and ARGUS Codes.

Serguei Ovtchinnikov received the B.S. degree in
physics and mathematics and the M.S. and Ph.D.
degrees in computer science (numerical analysis)
from the University of Colorado at Boulder, Boulder,
CO, USA, in 1995, 2001, and 2006, respectively.

He is currently a Senior Staff Scientist at Leidos
Inc., Billerica, MA, USA. His research interests
focus on applications of High Performance Comput-
ing (HPC) to computational electromagnetics.

Dongzheng Chen received the B.S. degree in
physics from Peking University, Beijing, China,
in 2016, and the M.S. degree in materials science
and engineering from the University of Wisconsin–
Madison, Madison, WI, USA, in 2017, where he
is currently pursuing the Ph.D. degree with the
Department of Materials Science and Engineering.

His current research interests include thermionic
emission modeling and space-charge effects.

Abhijit Jassem received the B.S. degree in nuclear
engineering from Purdue University, West Lafayette,
IN, USA, in 2016. He is currently pursuing the Ph.D.
degree with the University of Michigan’s Nuclear
Engineering and Radiological Sciences Program,
University of Michigan, Ann Arbor, MI, USA.

He is working with the Plasma, Pulsed Power,
and Microwave Laboratory, University of Michigan,
Ann Arbor, MI, USA, under the supervision of
Prof. Y. Y. Lau.

Ryan Jacobs received the B.S. degree in mate-
rials science and engineering from the University
of Minnesota-Twin Cities, Minneapolis, MN, USA,
in 2010, the M.S. and Ph. D. degrees in materials
science from the University of Wisconsin–Madison,
Madison, WI, USA, in 2012 and 2015, respectively.

He is currently a Research Scientist with the
Department of Materials Science and Engineering,
University of Wisconsin–Madison. His work focuses
on using atomistic modeling and machine learning to
understand the structure and properties of materials

at the atomic scale, with a particular focus on the discovery and engineering
of novel material compounds for specific technological applications. His
main research application areas of interest comprise materials for energy
technology, such as solid oxide fuel cells, lithium ion batteries, and solar
photovoltaics, with another main thrust of his research centered around
investigating the surface electronic and thermodynamic properties of metals
and oxides used as electron emission cathodes.

Dane Morgan received the Ph.D. degree in physics
from the University of California at Berkeley, Berke-
ley, CA, USA, in 1998.

He was a Post-Doctoral Researcher and a Research
Scientist with the Massachusetts Institute of Tech-
nology (MIT) until 2004. He is currently a Professor
in materials science and engineering with the Uni-
versity of Wisconsin–Madison, Madison, WI, USA.
His work combines thermostatistics, thermokinetics,
and informatics analysis with atomic scale calcula-
tions to understand and predict materials properties.

He is presently training or has graduated/trained over 60 graduate students and
post-doctoral researchers and worked with approximately 150 undergraduates
in research. He is also the Harvey D. Spangler Professor of engineering and
a University of Wisconsin Vilas Scholar, where he received multiple teaching
and research awards and has published over 250 articles in materials science.

John H. Booske (S’82–M’85–SM’93–F’07) is cur-
rently a Vilas Distinguished Achievement Professor
with the Electrical and Computer Engineering
Department, University of Wisconsin–Madison,
Madison, WI, USA. His research interests include
experimental and theoretical study of coherent elec-
tromagnetic radiation, its sources and its applica-
tions, spanning the RF, microwave, millimeter-wave,
and THz regimes.

Dr. Booske is a fellow of the American Physical
Society in 2011. He received the IEEE EAB Major

Educational Innovation Award in 2014 and the IEEE Plasma Science and
Applications Award in 2018.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


